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2.1  Equations of State 

The equation of state can be written in different forms depending on the 

independent variables taken. Numerical algorithms should allow to calculate 

and optimize the axial turbine stages, both with an ideal and a real working fluid. 

It uses a single method of calculating the parameters of the state of the working 

fluid, in which as the independent variables are taken enthalpy i and pressure P: 

      , ; , ; ,T T P i P i S S P i    . (2.1) 

For a perfect gas equation of state with P and i variables are very simple: 

 
0

1
; ; ln ln

p

p

p

C P
T i S S C i R P

C R i
     . (2.2) 

For the water steam approximation formula proposed in [7] is used, which 

established a procedure to calculate parameters of superheated and wet fluid. 

It is easy to verify that the knowledge of the value of the velocity coefficient 

Tw w   allows to determine the value of losses at the expansion 

2
2

2

1
2Ti i w






   and obtain an expression that relates the enthalpies Ti  and 

i at the end of the isentropic and the actual process of expansion, as well as 

stagnated enthalpy in relative motion 
* 2 22 2wi H u i w    : 

  2 2 21 0w Ti i i     . (2.3) 

The last expression in combination with isentropic process equation from 

point 1 with parameters 11, iP  and the value of the relative velocity 

      * *

1 1 1 1, , ,w w TS P i S P i S P i  . (2.4) 
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allows to come, deleting from (2.3), for example Ti , to the following process 

equation with unknowns P, i: 

    2 * * *

1 12

1
, 1 , 0w w wS P i i S P i


 
      

 
. (2.5) 

With the help of the equation (2.5) can be solved a number of problems 

related to the thermal calculations of stages, which statement depends on which 

parameter of the unknown is a given. If we assume a known specific enthalpy i 

at the end of expansion, we obtain the equation (2.5) relative to the pressure P. 

This problem arises, for example, based on a predetermined degree of reaction 

or determining the counter pressure by the theoretical enthalpy drop per stage. 

Solution of equations of the form (2.5) with one unknown is carried out by 

means of minimizing the residual square using one-dimensional search of 

extreme. 

2.2  Aerodynamic Models 

2.2.1  Axisymmetric Flow in the Axial Turbine Stage 

Assume that in the flow path of the turbine: 

 the flow is steady relatively to the impeller, rotating at a constant angular 

velocity ω about the z-axis or stationary guide vanes. 

 the fluid is compressible, non-viscous and not thermally conductive, and 

the effect of viscous forces is taken into account in the form of heat 

recovery in the energy and the process equations, i.e., friction losses are 

accounted energetically. 

 if the working fluid is real (wet steam) it is considered the equilibrium 

process of expansion. 
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 the flow is axisymmetric, i.e., its parameters are independent of the 

circumferential coordinate. 

Under these assumptions the system of equations describing the steady 

axisymmetric compressible flow motion, includes: 

1. The equation of motion in the relative coordinate system in the Crocco 

form 

 2W W W T S H F f            , (2.6) 

where 
2 2 22 2 2 uH i w u i c uc       – rothalpy; F  – blade force; 

 2
,

T
f W W S

w
    – friction force. 

2. Continuity equation 

   0W  , (2.7) 

where   – blockage factor. 

3. The equation of the process or system of equations describing the process 

 
  

 

2 2 21 2 0;

, 0.

T

in T T

H u i i

S S P i

       


  

 (2.8) 

4. The equations of state 

      , ; , ; ,T T P i P i S S P i    . (2.9) 

5. The equation of the flow surface 

  , 0W n  , (2.10) 

where n  – normal to the 2S  surface (Fig. 2.1). 
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6. The equation of blade force orthogonality to the flow surface 

 , 0n F    . (2.11) 

Projections of the vortex in the relative motion rot W W  to be 

determined by the formulas: 

 

Figure 2.1  The surfaces of the three-dimensional flow, relative  

flow angles and velocity components. 
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    

 (2.12) 

Taking into account (2.12), projection of the equation of motion (2.6) on the 

axes of cylindrical coordinate system can be written as follows: 
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z = const 
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 on the r axis (radial equilibrium equation) 

 
 

2
uu r z

z u r r

rww w w S H
w w T F f

r r z z r r


     
        

     
; (2.13) 

 on the u axis: 

 
 

2
u ur

z r u u

rw ww
w w F f

r r z


 
   

 
; (2.14) 

 instead of the projection on the z axis will use energy conservation 

equation: 

 0
H

s





. (2.15) 

The components of the relative velocity based on the designated flow angles 

(Fig. 2.1) can be written as 

 

cos sin cos ;

ctg cos ;

sin sin sin .

z s

u s

r s

w w w

w w w

w w w

  

 

  

  


  
  

 (2.16) 

From the relation , 0n F     will have: 

; ;r u u r z u u z z r r zn F n F n F n F n F n F   . 

We express the ratio of the normals projections through the flow angles    

(Fig. 2.2): 

tg ; tg ; tgr z z
p

u r u

n n n
c

n n n
       . 

Than we can write 

 tg ; tg ; tgr u z r z p uF F F F F c F        . (2.17) 
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Figure 2.2  The normal projections to the 2S  surface. 

Transforming the radial equilibrium equation 

Using the relationship between the coordinates z, r and s, r in the meridian 

plane 
1

sin
cosz s r




   
  

   
, and the ratio (2.16), the second term of the 

equation of radial equilibrium (2.13) can be converted 

 2 ln ln
cos sin s sr z

z s

w ww w
w w

z r s r
 

     
       

      
. (2.18) 

where s    – the curvature of the meridian stream line. 

To determine the ln sw s   member use the continuity equation for an 

axisymmetric flow: 

 
   

0
r zr w r w

r z

  
 

 
; (2.19) 

which by means of (2.16) and the connecting relations between the cylindrical 

system of coordinates z, r and the coordinates of s, n in the natural grid (stream 

line s in the meridian plane and normal to it n) 
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cos sin , sin cos
z s n r s n

   
     
   

     
 

transformed into 

 ln 0sr w
n s


 

 
 

 
. 

The last expression, in turn, by shifting from the coordinates s, n to 

coordinates s, r is represented as: 

 
 tg lncos ln ln

tg 0s
r w

r r s s s

  


  
    

   
, (2.20) 

since 

1 1
sin tg

cos cosn r s r

   
 

 

    
        

. 

To determine the ln s   member, engage the energy equation (2.15), 

where, according to (2.6) and Fig. 2.1 

2 22

const
2 2 2

u s
u u

c wc
H i uc i uc        . 

Then we have 

 
   2 lnu us u

s u

uc ucw ci c i
c w c

s s s s s s s

    
     

      
. (2.21) 

The expression for i s   defined differently depending on whether we are 

dealing with an ideal or a real working fluid. 

The first term of (2.13) with (2.16), as well as Fig. 2.1 can be written as: 



◆◇     Optimization of the Axial Turbines Flow Paths     ◇◆ 
 

58  http://www.sciencepublishinggroup.com 

 

   

2 2 2 2
2

2 2

2

ctg ctg
ctg ;

2

2 .

uu s s s
s

u uu u u

rww w w w
w

r r r r r

rw c rw c r r c r r

r r r r r

 


 


  
    

  

  
   

 

 

Radial equilibrium equation (2.13) can now be converted to the form: 

 for a given cur (inverse problem): 

2 ln ln
cos sin s s

s

w w
w

s r
 

  
    

  
 

 
 2

2

uu
r r

c rc r r S H
T F f

r r r r

   
    

  
; (2.22) 

 in the gap between vanes (free channel): 

2 ln ln
cos sin s s

s

w w
w

s r
 

  
    

  
 

 
 2

2

uu
c rc r r S H

T
r r r r

   
   

  
; (2.23) 

 for a given : 

 
2 2

2 2ln lnctg 1 ctg
cos sin 1 ctg

2

s s
s

w w
w

s r r r

 
  

  
       

   
 

 2 ctgs r r

S H
w T F f

r r
 

 
    

 
. (2.24) 

The projection of the equation of motion in the circumferential direction 

Let us now consider the projection of the equation of motion (2.6) in the 

circumferential direction (2.14). Using (2.16), and the relationship between the 

coordinates z, r and s, r in the meridian plane 

1
sin

cosz s r




   
  

   
, 
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equation (2.14) becomes: 

 for a given cur (inverse problem): 

 
 us

u u

c rw
F f

r s


 


; (2.25) 

 in the gap between vanes (free channel): 

 
 

0
uc r

s





; (2.26) 

 for a given : 

 2 lnsin ctg ctg
ctg 2 sins

u s s u

w
F w w f

r s s

  
  

 
       

. (2.27) 

These equations enable us to determine the projection of the blade force uF  

in the circumferential direction. The radial component rF  is expressed through 

the circumferential according to (2.17). 

The projections of the friction force on the coordinate axes 

The expression for the friction force  2
,

T
f W W S

w
    can be transformed 

by using the expression (2.16) and the binding ratio between the cylindrical 

coordinates z, r and the coordinates s, r: 

 sin
W S

f T
w s




 


, (2.28) 

whence we get the projection of the friction force on the coordinate axes: 

2sin sin ; sin cosr u

S S
f T f T

s s
   

 
   

 
. 

The continuity equation is advisable to use in a form 
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2
s

dG
d r w dn  


  , 

or, using the obvious relation cosdn dr   (Fig. 2.3), we have: 

 cossr w
r


  





. (2.29) 

If the working fluid can be considered as ideal gas, for which the equations of 

the state and of the process are simple expressions, using the equation [8] 

1 1 constk ki    , we obtain 

 2 ln lni
a

s s s

    
  

   
, (2.30) 

where  2 1a k i kRT    – local sound velocity square. 

Substituting (2.30) into (2.21), solving (2.21) and (2.20) as a system of linear 

equations with unknowns ln sw s   and ln s  , we obtain for a given uc r : 

 
2

tgln 1 cos
tg

1 M

s

s

rw

s r r




 
   

  
 

 
 

2 2

ln 1 lnuu u
ucc c

s a s a s s

   
    

    
. (2.31) 

Note that 

 
  2

sin
uu u u

u

c rc c c
c

s r s r



 

 
, (2.32) 

since sin , Ms sr s w a    . 
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Figure 2.3  Axial turbine stage meridian projection. Symbols used  

in the simplified stage calculation procedure. 

For a free channel from the projection of the equation of motion in the 

absolute coordinate system to the circumferential direction, obtain, that the 

circulation constuc r   along the meridian streamline and   0uc r s   . 

Then for a free channel  1   from (2.31) we have: 
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. (2.33) 

2.2.2  Aerodynamic Calculation of the Axial Turbine Stage in Gaps 

The considered above in the general formulation, the problem of calculation 

of axisymmetric flows of a compressible fluid in the flow path of the axial 

turbine can be simplified and reduced to the calculation in gaps [9]. The flow in 

the axial gap is seen at the main proposals set out above. Within axial gap in the 

space free of the blades 1  ; because of its small length in the axial direction 
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the entropy S locally do not changes along the meridian streamlines                

(i.e. 0S s   ); it is possible to force components 0r rF f  ; stream keeps 

the direction of motion, telling him by blades (i.e., the angle of the flow  is set). 

In these assumptions the radial equilibrium equation will differ from (2.24) in 

the absence of the right side of rF  and rf : 

 
2 2

2 2ln lnctg 1 ctg
cos sin 1 ctg

2

s s
s

w w
w

s r r r

 
  

  
       

   
 

 2 ctg 0s

S H
w T

r r
 

 
   

 
. (2.34) 

From the energy equation (2.21), using (2.32), considering the fact that 1   

and along the stream lines   0uc r s    obtain 

 

2

tgln 1 cos
tg

ln
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s

s

rw

s r r
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


 
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           

 

 
 

2

3

ln
sin

uc r S
T

r P i s P

  


    
    

     

. (2.35) 

Radial equilibrium equation (2.34), written about the speed w (that gets rid of 

the derivative 
2ctg r  ) by going to the new independent variable  by a 

ratio 

coss

d d
r w

dr d
 


 , 

takes the form 

2sin ctg 2 ctg
sin cos

cos sin

dw
B

d r r w

   
 

   

 
      
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1 dH dS

T
w d d 

 
  

 
. (2.36) 

The continuity equation can be represented as: 

 
1

sin cos

dr

d r w   
 . (2.37) 

Thus, flow in the gap of the turbine stage described by the system of two 

ordinary first order differential equations (2.36), (2.37) with the boundary 

conditions  0 hr r ,  *

tr r  . 

The values ln SB W s    are determined by (2.35), and the enthalpy – 

according to the equation energy 

2 2 2

const
2 2 2

u

w u c
H i i uc       . 

To calculate the temperature, density and entropy from the formulas (2.9) 

need to know other than the enthalpy i also pressure P, which for some w can be 

found from the second equation (2.8): 

 
2 2

2
,

2 2
in T

u w
S S P H



 
   

 
. (2.38) 

Consequently, the system of equations, describing the steam flow in the axial 

turbine stage gaps are as follows: 

 after the guide vanes: 
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sin ctg
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,
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d r c

dc
B

d r r

di dS
T

c d d

   

 
 

  

 


 




  
     

  


 
  
  

 (2.39) 

where 

 * 2

1 1 1 0 1 1 1 1 1ln ; 2; ,sB w s i i c T T i P      ; 

      * * 2 2

1 1 1 1 1 1 1 1 0 1 1 0 1, ; , ; , 2Ti P S S i P S S P i c      . 

Boundary conditions 

 1 0 hr r ;  *

sr r  ; 

 after the rotor: 

 

 

2

2 2 2 2 2

2

2 2 2
2 2 2 2

2 2 2 2

*
1 102 2

2

2 2 2

1
;

sin cos

sin ctg
sin cos

cos

2 ctg 1
,

sin

u

dr

d r w

dw
B

d r r

d u cdi dS
T

w w d d d

   

 
 

  

 

   


 




 
    

 


 
     
   

 (2.40) 

where 

 * 2 2

2 2 2 0 1 1 2 2 2 2 2 2ln ; 2 2; ,s uB w s i i u c u w T T i P        ; 

      * 2 2 * 2

2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2, ; , ; , 2 ; 2T w wi P S S i P S S P i w i i w        . 

Boundary conditions: 
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 2 20 hr r ;  *

2 2tr r  . 

The numerical realization of the stage thermal calculation problem 

Mathematical models of axial turbine stages, discussed above, allow their 

calculation by setting some additional (closing) relations, for example, the 

distribution of the angles  and  (direct problem), the quantities ,u zc r c , et 

al. (inverse problems). 

To solve the direct problem of stage calculation in gaps the following 

information is required: 

 form of the stage meridian contours, i.e. external and internal radii of axial 

sections; 

 rotor speed ; 

 stagnation parameters at the stage input 
*

0P  and 
*

0i ; 

 the geometrical characteristics of the blades: entry and exit angles, as well 

as blades count in the crowns, the chord, edge thickness and other 

parameters necessary for determining the velocity coefficients along the 

blade length; 

 if the velocity coefficients are predefined – their distribution along the 

blade length. 

 streamline slope angles  and their curvature  in fixed axial sections. 

There are varieties of the direct problem with a given flow rate G and with a 

specified back pressure 2P . Solution of the problem with a fixed flow easier 

because the integration of the equations (2.39), (2.40) is made for a known 

 * 2G   value and mathematically formulated as a two-point boundary 

value problem for a system of two ordinary first order differential equations of 

the form: 
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 

 

1

2

, , ;

, , ,

dw
f w r

d

dr
f w r

d








 






 (2.41) 

with boundary values:  0 hr r ;  *

tr r  . 

Right sides of equation (2.41) are calculated according to the formula of the 

system of equations (2.39), (2.40). 

The decision imposed positivity of w (unseparated flow condition). 

From physical considerations it is known that problem (2.41) can have either 

two solutions, corresponding sub- and supersonic flow mode, either one or do 

not have a solution. 

One way of solving the problem (2.41) is to reduce it to finding the root of 

the transcendental equation, which serves for the selection of the missing 

boundary condition at the hub  0 hw w . Indeed, setting a boundary condition 

hw  and integrating (2.41) as the Cauchy problem with the initial conditions 

 0 hr r ;  0 hw w , we obtain at 
*  an approximate value of the outer radius 

 *

tr r  . Considering tr  as a function hw  we obtain the equation with one 

unknown hw : 

   0h tr w r  . (2.42) 

Thus, for the solution of the direct problem of the stage calculation with a 

given flow rate is required to solve the system of transcendental equations: 

 
 

 

1 1 1

2 1 2 2

,

, .

t h t

t h h t

r c r

r c w r

 


 
. (2.43) 
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The solution of (2.43) is made in two stages: first, the first equation is solved 

and the distribution of the flow in fixed axial gap is found, then, knowing the 

parameters entering the impeller can solve the second equation. That is, the 

problem is reduced to determining the roots of the equation with one unknown 

for each of the two equations (2.43). For the calculation of the subsonic 

solutions of (2.43) can be successfully used the methods of nonlinear 

programming. The system (2.43) is solved by sequential minimization of 

residuals 

 
 

 

22

1 1 1 1

22

2 2 2 2

,

.

t h t

t h t

r c r

r w r





     


      

 (2.44) 

using one of the described one-dimensional extremum search methods. 

Solution of the problem with a given back pressure 2P  (flow rate unknown) 

is more complicated. To determine the unknown mass flow G to the system of 

equations (2.43) is necessary to add one more thing – a limit on the heat drop. 

In this formulation of the problem it seems appropriate to set the mass flow 

averaged pressure according to the formula 

 

*

*

2 2 . .

0

m defP d P



  . (2.45) 

In view of (2.45) to calculate the level with a given back pressure is needed to 

solve a system of three equations with three unknowns: 

 

 

 

 

*

0 1 2 0

*

1 1 1 1

*

2 2 1 2 2

, , 0;

, 0;

, , 0.

h h

h t

h h t

h c w h

r c r

r c w r

 

 

 

  



   


   

 (2.46) 

Numerically, the problem is solved to minimize the sum of squared residuals 
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* 2 2 2

0 1 2I       (2.47) 

on three variables 
*

1 2, ,h hc w   using one of the multidimensional extremum 

search methods. 

A maked up mathematical model describing the flow in the axial gaps of 

turbomachine (equation (2.39), (2.40)), allows the calculation of supersonic 

flow (including the transition through the speed of sound), which M 1s  , i.e., in 

the case of the meridional component of velocity less than the velocity of sound. 

Specified the conditions satisfy all existing stages of powerful steam turbines. 

Calculation of supersonic stages must be performed with a given back 

pressure, because otherwise does not provide a unique solution of the equation 

of the form (2.41). At the same time, the system of transcendental equations 

(2.46) in the variables 
*

1 2, ,h hc w   in contrast to (2.43) has a unique root. 

Another feature of the supersonic stages calculation is the need to consider 

the flow deflection in an oblique cut at Mach numbers higher than unity. For 

this purpose it is possible to use a method of determining the flow deflection 

angle in an oblique cut comprising in equating flow rate into the throat section 

and behind the blade [10, 11]. 

In this case, to calculate the residuals of equations (2.44), (2.46) it is 

necessary to integrate the system of ordinary differential equations of the form 

(2.41), namely (2.39), (2.40). These equations are due to the complexity of the 

form of the right sides in the general case can be integrated numerically. When 

integrating (2.39) (2.40) should be borne in mind that at each step of pressure 

shall be determined by solving the equations of the form (2.38), which greatly 

complicates the task. 
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Finally, we note that because of the existence of the right sides of (2.38), 

(2.40), a member T S   , the system, generally speaking, can not be 

considered as written in the form of Cauchy, as these non-linear supplements 

are some of the functions 2w  or 1c , r and their derivatives. When integrating 

these terms are determined by successive approximations. 

The important point is the choice of numerical methods for integrating 

systems of the form (2.41). Extensive experience in solving such problems 

suggests the possibility of partitioning the integration interval to a small number 

of steps (5–10). As a result of numerical experiments comparing different 

methods, preference was given to the modified Euler’s method [12], which has 

the second order of accuracy for the integration step. 

The leakage calculation is necessary to conduct together with a stage spatial 

calculation, the results of which are determined the parameters along a height in 

the calculation sections, including the meridian boundaries of the flow part. 

The stage capacity depends on the value of clearance (or leakages), in 

connection with which calculation of the main stream flow is made by mass 

flow amplification at fixed the initial parameters and counter-pressure on the 

mean radius, or with counter-pressure elaboration at fixed initial parameters and 

mass flow. 

The need for multiple steps in optimization problems requires a less       

labor-capacious, but well reflecting the true picture of the flow, methods of 

axisymmetric stage calculation. Its main point is to calculate the stage 

parameters in the axial gaps supplemented by the algorithm of stream lines 

slope and curvature refinement in the design sections. 

When calculating the stage taking into account leakage, the continuity 

equation is convenient to take the form: 
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 cossr w
r


  





, (2.48) 

where  – mass transfer coefficient, which allows to take into account changes 

in the amount of fluid passing through the crowns, and at the same time to solve 

a system of ordinary differential equations in sections in front of and behind the 

impeller like a constant mass flow rate. 

As shown, the calculation of spatial flow in the stage with the known in some 

approximation the shape of the stream lines is reduced to the solution in the 

sections 1 constz   and 2 constz   (Fig. 2.3) of a system of ordinary differential 

equations (2.39) and (2.40), where as independent variable a stream function  

is taken. Thus, the equations describing the flow in the axial gap, presented in 

the form of: 

 

Figure 2.4  Estimated distribution of the reaction degree in a series of  

stages with 19mD l 
 
[13]. 

 in the section after the guide vanes: 
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 (2.49) 
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 in the section after rotor: 
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 (2.50) 

The solution of the boundary problems (2.49), (2.50) for a given mass flow 

rate is reduced to finding the roots of the two independent transcendental 

equations (2.43) with respect to the hub velocities 1 2,h hc w . 

For a given backpressure to the number of defined values the mass flow 
*  

is added and the problem reduces to solving a system of three equations. As a 

third equation the stage heat drop constraint is added (2.45) that can be 

symbolically written as 

 *

1 2 0, , 0h hh c w h   . 

Systems of equations are solved using the methods of nonlinear programming. 

An approximate method of meridian stream lines form amplification using 

their coordinates in the three sections, is to construct an interpolation cubic 

spline at a given slopes at the flow path boundaries. In order to accelerate the 

convergence the stream line curvature is specified with lower relaxation. 

Previous calculations showed that the interpolation process converges with 

sufficient accuracy in 3…5 iterations. 

Mass flow rates through crowns carried out in parallel with the streamlines 

construction. The algorithm allows to solve the direct problem of the spatial stage 

calculation in the gaps in various statements, with given or variable in the process 
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of calculating the streamlines, velocity and flow coefficients of crowns, at various 

ways of flow angles distribution along the height, for a perfect gas or steam. 

 

Figure 2.5  Estimated () and experimental (----  ----) distribution of parameters  

in the M1 stage gaps 8.3mD l   [13]. 

 

Figure 2.6  Estimated () and experimental (----  ----) distribution of parameters in 

the P3 stage gaps 8.3mD l   [13]:  •  –calculation of cylindrical theory. 

The algorithm was tested by comparing the calculation results with the exact 

solutions, as well as with the experimental data obtained for a large number of 

stages of the experimental air turbines in the turbine department of NTU "KhPI" 

[13–14, 15]. The results of calculations and experiments illustrated in             

Fig. 2.4–2.12. It should be stated a good calculations agreement with the 

experimental result for the various stages of the different elongation, meridian 

shape contours, twist laws and the reaction degree at the mean radius. 
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The greatest difficulty to calculate present stages with the steep opening of 

the flow path (Fig. 2.12), and the cylindrical stages with inversely twisted guide 

vanes (Fig. 2.4, 2.6–2.8). 

 

Figure 2.7  Estimated () and experimental (----  ----) distribution of parameters in 

the stage 41 gaps with 5.13mD l   [13];  •  – calculation of cylindrical theory. 

The calculation of stages with inverse twist using the proposed method 

allows to obtain a valid gradient of reaction degree and circumferential velocity 

component of the stage, while the calculation provided in assumption of 

cylindrical flow gives results that differ significantly from the experimental data 

(Fig. 2.6–2.8). The technique allows to take into account also the effect of the 

law of the impeller’s twist on the distribution of parameters in the gap between 

guide vane and rotor. This is evidenced by the comparison stages 41 and 42    

(Fig. 2.7, 2.8) with the same nozzle unit, the first of which has a cylindrical 

impeller, and the second – twisted by constant circulation law. 
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Figure 2.8  Estimated () and experimental (----  ----) distribution of parameters in 

the stage 42 gaps 5.13mD l   [13];  •  – calculation of cylindrical theory. 

 

Figure 2.9  Estimated () and experimental (----  ----) distribution of parameters in 

the stage 32 gaps 5.13mD l   [13]. 
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Figure 2.10  Estimated () and experimental (----  ----) distribution of parameters 

in the stage I gaps 3.6mD l   (the author’s tests). 

 

Figure 2.11  Estimated () and experimental (----  ----) distribution of parameters 

in the stage gaps II 3.6mD l   (the author’s tests). 
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Figure 2.12  Estimated () and experimental (----  ----) distribution of parameters 

in the stage 33 gaps 3.2mD l   [13];  •  – full axisymmetric statement calculation. 

2.2.3  Off-Design Calculation of Multi-Stage Steam Turbine  

Flow Path 

Formulation of the problem 

The off-design analysis problem is to determine the gas-dynamic 

characteristics derived from the design calculation such as the size of the flow 

path (FP) and the parameters that determine the long-term (steady) operation of 

the turbine. The need to analyze FP off-design modes arises when assessing 

aero- and thermodynamic, power, strength parameters of the turbine in extreme 

operating conditions, the choice of method for control and calculation of steam 

distribution, for turbines designed to operate at changing the regime parameters 

(speed, unregulated steam extraction and so on). 

The specifics of these problems requires a gas-dynamic calculations in a 

direct statement, which is more labor intensive than the calculations commonly 
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used in the design stage. In connection with this methods designed for use with 

a computer optimization procedures must meet several requirements: 

 to base on the equations of motion of a real working fluid in the flow path 

of the multi-stage turbine; 

 to consider with the required accuracy the influence of geometrical and 

operational parameters on the loss factors of the FP elements; 

 to allow to conduct calculations with varying from section to section the 

mass flow rates; 

 to be highly reliable and economical in terms of consumption of computer 

resources, i.e. make it possible to carry out multi-variant and optimization 

calculations. 

To calculate high, medium and, to a lesser extent, the low-pressure parts of 

powerful steam turbines, justified the use of one-dimensional gas dynamics 

calculations using the simplified radial equilibrium equations in a axial 

clearance, the leaks balance at the root of the diaphragm design stages and the 

calculation method of the FP moisture separation. Accounting for the loss of 

kinetic energy and efficiency assessment should be carried out by successive 

approximations based on the current results of the gas-dynamic calculation and 

empirical relationships, and reliability of the results – achieved by comparison 

with experimental results and the introduction of necessary adjustments. 

Should be regarded as a satisfactory the accuracy of coincidence of calculated 

and experimental values of the relative losses in the range of 5…7% for FP made 

with straight or twisted by constant circulation law blading in the absence of the 

sharp curvature of the meridian contours. When the actual loss levels of 10...30% 

error in determining the efficiency, thus lies in the range of 0.5...2% [15]. 
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Method of calculation 

One-dimensional steady-state equilibrium adiabatic motion of water vapor in 

the flow path in a coordinate system rotating with angular velocity , sought a 

system of equations: 

 energy 

 
2 2

2

w u
H i


  ; (2.51) 

 continuity 

 
zG F w ; (2.52) 

 process 

  2 *

0 2

1
, 1 0wS S P i i


 
      

 
; (2.53) 

 state 

          , ; , ; , ; , ; ,T T P i p i S S p i P P i S i i P S      ; (2.54) 

 flow kinematic parameters relations. 

The solution to this system of equations for an isolated axial turbine stage in 

a direct statement requires: 

 stage input enthalpy 
*

0i ; 

 stage output pressure 2defP ; 

 angular rotational speed ; 

 mean diameters of sections 
1 2,m mD D  and blade lengths 

1 2,l l ; 

 cascade’s output effective angles 
1 2,e e  ; 
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 data to estimate blades velocity factors: chords, number of blades, edge 

thickness, geometry entry angles so on; 

 the data for the calculation of additional energy losses, such as the types 

of seals and their sizes, the values of axial and radial clearances, the 

number of bonding wires, etc. 

The two main statements involve mass flow 
0G  determination at certain 

stagnated pressure *

0P  at stage inlet, or the *

0P  definition at known flow rate. It 

is also possible the solution of the problem with given at the same time 
0G  and 

*

0P  changing angles 
1e  or 

2e , in particular, makes it possible to simulate the 

nozzle assembly with rotary blades. In all cases, subject to the definition of the 

flow speed 
1c  and 

2w . 

For definiteness we shall consider the problem with fixed *

0P  and mass flow 

determination. We transform the equation of continuity (2.52) for the nozzle in 

view of (2.51), (2.53), (2.54): 

  
2 2

* * * * *1 1
1 0 0 0 0 0 1 1 12

, , , sin
2 2

c c
G P i S P i i c F 



  
     

  
 (2.55) 

with unknown 
1c  and G. 

Similarly, after the impeller 

  
2 2 2 2
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This equation contains the unknown
1c , G, 

2w . 

Under 
1  and 

2  at subsonic flow understood the cascade’s effective angles, 

and at supersonic – flow angles in the oblique cut-off by the Ber formula. 

The third equation is: 

  
2 2

2 2
1 1 22

, ,
2 2

def

u w
P H S P i P



 
   

 
. (2.57) 

Under certain velocity factors  and  to determine the unknown 
1c , G, 

2w , 

there are three equations (2.55)–(2.57), which in general terms be written as 

follows: 

 

 

 

 

1 1

2 1 2

1 2

, 0;

, , 0;

, , 0.

g G c

g G c w

h G c w

 


 


 

 (2.58) 

The system (2.58) is solved numerically by minimizing the sum of squared 

residuals 
2 2 2

1 2g g h   using the conjugate gradient method. 

Calculation of multistage flow path does not differ systematically from the 

stage calculation. An equation of (2.58) is written for each of the stages, which 

leads to a system of the form 

 

 

 
 

1 1 1 1 2 1 2 2

2 1 1 1 2 2 1

1 11 2 21

, , , , , , . 0;

, , , , , , . 0, 1, , ;

, , , , , , 0,

j j j j j

j j j j j

n n

g G c c w w

g G c c w w j n

h G c c w w

  

 





  


 

 (2.59) 

where j – stage index; n – number of stages in the FP. 

The numerical solution is carried out by minimizing the function 
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 2 2 2

1 2

1

n

j j

j

g g h


   

by 2 1n  unknowns  1 2, , 1, , ,j jc w j n G . 

Sections may have different mass flows because of the leaks, district heating 

or regenerative steam extraction, moisture separation and so on. In the equations 

(2.59) in this case instead of a mass flow rate G in the relevant sections should 

take the current value 

1k k kG G G  , 

where kG  – given or confirmed in iterations the mass flow change in the 

transition from  1k  section to the k-th  1 2k n . 

The unknown is considered the 0G  mass flow at the FP entrance. 

After the solution of (2.58) or (2.59) all the parameters of the flow calculated, 

loss factors and the actual mass flows in sections adjusted. The required number 

of iterations is usually equal to 3...4. 

Kinetic energy loss determination 

Losses associated with the leakage of the working fluid are considered 

separately. The remaining components are divided into losses in cascade and 

auxiliary, which are allocable to the stage heat drop. 

Methods of assessing the losses in cascades based on research [8, 16] with a 

corresponding adjustment of empirical dependencies using test data about 

profiles used in the turbine building [17, 18]. 

Following [16], the loss factor in the cascade  2 21X     is the sum of 

the factors of profile 
pX  and secondary sX  losses, which are defined as 

follows: 
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Re Mp pb i iy t t yX X N N N N x x x      , (2.60) 

where 
pbX  – base profile loss; ReN  – Reynolds number correction; iN  –

incidence angle correction; 
iyN  – correction for the angle of attack associated 

with the elongation of the leading edge profile; ,t tN x  – trailing edge 

thickness corrections; Mx  – Mach number correction at M 1 ; 
yx  – 

correction due to the elongation of the input portion of the profile with a zero 

angle of attack. 

 
Res sb b lX X N N N , (2.61) 

where sbX  – base secondary loss; 
b lN  – relative blade height correction; N  – 

an amendment to the length of hanging visor. 

Corrections for the Reynolds number, angle of attack, the thickness of the 

trailing edge, at supersonic flow are taken over without change [19]. The 

amendment to the angle of attack in the profiles provided with an extension of 

the leading edge, is estimated according to experimental studies on the standard 

nozzle profiles and the impact of the extension on the profile loss – NPO CKTI 

the procedure [20]. 

The basic component of the profile 
pbX  obtained by a corresponding 

adjustment to the loss level of graphic dependence [16]. Basic secondary loss is 

determined by the corrected chart [16], an amendment to the ratio of the chord 

to the height of the blade 
b lN  – according to [16], and the coefficient N  taking 

into account the length of the visor hanging over the trailing edge of the blade – 

based on experimental data on nozzle standard profiles test data. 

When assessing the energy losses in the rotor blades, can be taken into 

account the effect of the periodic incident flow unsteadiness caused by the 
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presence of traces of the previous nozzle cascade, as amended 
N . The degree 

of non-uniformity of the incoming flow is taken over [8]. 

Additional energy losses are the disc friction and ventilation, extortion, 

humidity, the presence of the wire bonding and friction in the open and closed 

axial clearance in accordance with the guidelines [21]. 

Leak sand leakage losses calculation 

It is estimated that losses caused by leakage of the working fluid into the gaps 

of the flow path, associated with a decrease in the mass flow rate through the 

crowns, aerodynamic and thermodynamic mixing with the main flow losses, as 

well as the deviation of the kinematic parameters in the gaps comparing to the 

design. 

To determine the thermodynamic parameters near the flow path margins, 

needed to calculate the leaks mass flows, a simplified equation of radial 

equilibrium 
2

uc
P r

r


    is involved. In the gap between vanes considered that 

constuc r  , 1 const  , and behind the stage 2 constuc  , 2 const  . 

Leaks in the root area of multistage flow paths are the solution of the mass 

flow balance equations through diaphragm, root seals and discharge holes 

taking into account given dependences of the gaps flow factors and friction 

coefficients of the regime and geometrical parameters, changes in pressure and 

flow swirling in the disk chambers along the radius at the presence of the 

working fluid flow etc. 

Evaluation of leakages based on a calculation of the anterior chamber only, 

first, does not allow correct balance the mass flows along the FP, and secondly, 

may lead to considerable errors as the leakage values and axial forces, 

particularly at the off-design operation. 
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The algorithm is developed for the calculation of leakages in multistage FP, 

in which can be built leaks circuit within the cylinder based on the majority of 

the factors, influencing them [14]. Calculation of mixing the main flow with 

leaks through tip and root gaps is based on the balance equations for flow, 

enthalpy, and entropy. Raising the equations of motion for the evaluation of 

aerodynamic mixing losses allows, under certain assumptions, take into account 

the impact on the mixing loss of the blowing working fluid angle. 

The third group of losses factors, caused by leaks, mainly, through a change 

of velocity coefficient of cascades after gaps, where mixing occurs, due to 

variations of inlet flow angles. 

2.2.4  Simulation of Axisymmetric Flow in a Multi-Stage  

Axial Turbine 

To solve this problem, we used a combined one-dimensional and 

axisymmetric approach. 

A mathematical model of a coaxial flow of the working fluid in the flow part 

of a multi-stage axial turbine 

This model belongs to the class of quasi- two-dimensional models, and is a 

logical continuation of the one-dimensional model of the FP shown in 

subsection (2.2.3). All equations, methods and techniques of assessment of 

energy dissipation in the elements of FP used in the one-dimensional model, 

have been fully utilized in the development of quasi- two-dimensional model of 

the coaxial FP. 

A distinctive feature of the coaxial model is the fact that the system of 

equations (2.59) are determined not to cross-sections corresponding to the mean 

radius of the multistage FP crowns, and for each current streams along its 

midline. 
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The system of equations (2.59) in a coaxial FP model in a general form as 

follows: 

 

             
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 (2.62) 

where m – is equal to increased by two the number given sections (streamlines) 

along the radius of the blades; j – number of cross-section along the blade 

height (the first cross section is located at the root level). 

Accordingly, the dimension of the system of equations in a mathematical 

model of a coaxial flow in the FP is equal to (n + 1)m. 

The marked increase in the number of sections required for a significant 

approaching of the root and near-the-tip stream lines to the root level and the 

peripheral area, respectively. With the same purpose the cross sectional area of 

the extreme stream lines assigned minimum values (1% of area of the 

corresponding vane). For the first iteration the remaining cross-sectional areas 

between the stream lines are equal and are determined as follows: 

     ,
0.98 2

k j k
S S m  , 

where  k
S  – cross-section area of k-th vane. 
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After determining the 
 ,k j

S  are determined the radii of mean lines of all flow 

streams, angular velocities and the values of all the geometric characteristics of 

the cascades at those radii. In subsequent iterations, the average radius of the 

stream lines, and all the characteristics of cascades and the working flow 

determined in accordance with the obtained distribution of the mass flow the 

radius of corresponding vanes. This ensures the equality of the working fluid 

(including the extractions and leakages) along the respective stream lines. 

Considering that the system of equations (2.62) is based on the one-

dimensional flow theory for each stream line, where there is no equation of 

radial equilibrium, it becomes apparent that the above-described method of 

stream tubes sizing, is most accurate by using this model, it will be possible to 

evaluate the characteristics of the axial turbines, which vane’s twist corresponds 

to the constuc r   law, or close to it. For practical tasks coaxial mathematical 

model is most suitable when assessing the characteristics of the high pressure 

cylinder (HPC) flow path. 

Despite the fact that the flow of working fluid along each stream tube in 

consideration of coaxial mathematical model of the FP is modeled in 

accordance with the one-dimensional theory, when calculating the flow 

kinematics the slope angles of each stream line are taken into account (curvature 

of the streamlines is not considered) and identifies all components of the flow 

velocity in axial gaps. To determine the angles of the middle line of the stream 

tubes cubic spline interpolation is used. A well-known feature of these splines is 

the coincidence of the first and second derivatives of the neighboring areas in 

the nodes of the spline coupling. It allows us to describe the midline of a stream 

line using dependence, which provides its most smooth shape. 

Because in the outer iteration loop of the multistage axial turbine FP coaxial 

mathematical model (as well as in the one-dimensional mathematical model of 
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the FP), the quantities of moisture separation, tip leakage and near-the-hub 

leakages and the working fluid extractions to the heating system and feed-water 

heating refer to the entire stage, and not to each stream tube, the question of 

adequate distribution of the marked mass flow changes between the stream 

tubes arise. 

In this case, there are two variants of distribution of leaks and the working 

fluid extractions between the stream tubes: 

1) The total change in the mass flow of the working fluid in the transition 

from one vane to another distributed between streams in proportion to their 

cross-section areas (1-st iteration). 

2) The distribution of mass flow changes in proportion to the stream tube 

mass flow, the size of which is determined from the condition that the mass 

flow of each stream tube in accordance with the law of the flow rate changing 

along the radius of the stage, obtained in the previous iteration. 

Additionally, there are also two versions of the distribution of secondary loss 

of height of the blade: 

1) The secondary losses are concentrated at the ends of the blades. 

2) The secondary losses are evenly distributed among all streams tubes 

(proportional to the mass stream tube mass flow). 

Integral indicators of each stage in the coaxial model are determined by the 

relationships below 
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 (2.63) 

where 
   0 , 1 ,

,
i j i j

g g  and 
 2 ,i j

g  – working fluid mass flows of the j-th stream 

tube entering the i-th stage and through its nozzle and working cascade, 

respectively; 
     , , ,

, ,
str i j i j i j

N h lu  – power, heat drop and disposable work of the 

j-th stream tube of i-th stage; 
     

2 2

, , ,
, ,

i j i j i j
    – the efficiency, the velocity 

coefficients squares of the nozzle and working cascades along the j-th stream 

tube of the i-th stage. Similarly other integral indicators of the axial turbine FP 

stages are determined. 

A mathematical model of an axisymmetric flow of the real working fluid in a 

multi-stage axial turbine FP 

Despite the fact that the coaxial mathematical model of the flow of the 

working fluid in the FP, as described in the previous section, has a fairly narrow 

range of independent use, yet it has a sufficiently high potential. If the 

formation of the transverse dimensions of the stream tubes to carry the light of 

the decision of the radial equilibrium equation (sections 2.2.1, 2.2.2), this model 

can be successfully used in the calculation of axisymmetric flow in a multi-

stage axial turbine FP with virtually any kind of its crowns twists. 

The use of coaxial FP model to evaluate the distribution of the static pressure 

behind the rotor blades to determine disposable heat drops of each stage that you 
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need to solve the axisymmetric problem "with a given back pressure". It is known 

that only in such a setting is possible to find the correct solution to supersonic 

stages. Marked problems for each crown of multi-stage flow path solved by the 

means of stream line curvature method. Thus, in view of (2.46) and the system of 

equations (2.62), the scheme for solving the problem "with a specified back 

pressure" for a multi-stage axial flow turbine parts will be as follows: 

 Using a coaxial FP model made an initial assessment of the static pressure 

distribution along the radius of the stages working crowns. 

 Relations obtained according to the static pressure of the stages as the 

boundary conditions are transferred to the axisymmetric simulation unit 

(sections 2.2.1, 2.2.2).  

 As a result of solution of the boundary value problems (2.49) and (2.50), 

for each stage the distributions of the mass flow of the working fluid along 

the nozzle and working crowns radii for all FP stages are formed. 

 The resulting distributions of the mass flow of the working fluid along the 

radii of the crowns are used to determine the average of the radii of new 

stream tubes and areas of cross-sections for the coaxial FP model. 

 Calculation of coaxial FP model with the new values of the transverse 

dimensions of the stream tubes is performed. 

For clarity, the above-described sequence of solving axisymmetric problem 

"with a given back pressure" for multi-stage FP is shown in Fig. 2.13. 

Consider some features of the numerical solution of axisymmetric problem 

for multi-stage FP. First, in dealing with this problem it is necessary to 

determine the parameters of the working fluid along the streamlines for multi-

stage FP with variable from crown to crown mass flow of the working fluid. 

The marked change often occurs in the steam turbines FP, where the extraction 
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of the working fluid is carried out between the stages, for example, for the feed 

water heating or a heat supply needs. 

 

 

Figure 2.13  A block diagram of a multistage axial turbine FP axisymmetric  

problem solving with coaxial models. 

 

Data transfer about flow parameters distribution after 

stages to the axisymmetric modelling block 
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Considering that the equations (2.49) and (2.50), describing axisymmetric 

flow, valid for one stream line with a constant stream function along it, which 

value for the single-stage and multi-stage FP without extraction of the working 

fluid varies from 0   to  0 2G  , there is a need to adjust the 

definition of the stream function with the extraction of the working fluid. 

In this case, the most appropriate is the idea lies in the fact that the maximum 

value of the stream function for all crowns drive must be the same. With this in 

mind, is quite clear the *  definition 

 
 

 

0*

0

1

2 2

i

i

G
G

 

 
   
 

. (2.64) 

Thus, for the solution of (2.49) and (2.50), the boundary conditions for nozzle 

and the rotor in this case will be as follows: 
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 (2.65) 

Numerical integration of the equations (2.49), (2.50) is carried out by the 

Runge-Kutta third order accuracy method. The algorithm for determining 

streams tubes mean radii and their cross-sectional areas described below. 

Using dependencies  1 1r r   and  2 2r r  , as result of two-point 

boundary value problems for nozzle and rotor solutions, define, first of all, the 

root and tip stream tubes sizes. We assume that the mass flow through the 

stream tubes will be equal to 1% of the flow through the respective vanes. In 

this case, the current value of the  function for the mean line of the root stream 

tube will be equal to 
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*

1

0.005
0.005

2
 


   , (2.66) 

and for tip stream tube, respectively, 

 
*

1

0.995

2
m  


   . (2.67) 

Using linear interpolation algorithms on the received values of the stream 

functions corresponding to the utmost stream tubes mean lines, determine their 

radii. For other stream tubes the values of the stream functions and the mean 

line radii will be defined similarly by condition of equal mass flow rates for all 

stream tubes, which values are determined from the following relationship: 

 
     ,

0.98 2
i j i

g g m  . (2.68) 

As the result of boundary problems solutions (2.49) and (2.50), the mean 

radii of stream tubes for all the crowns of multistage FP are transmitted to the 

coaxial model, where for the new stream tube’s cross-sectional areas, angular 

velocities, and all the geometric characteristics of the nozzle and working blades, 

the FP calculation is carried out and the new static pressure distribution after 

working stages crowns is determined. 

The FP calculation results using the algorithm corresponding to the coaxial 

model again transferred to the block of boundary problems solutions (2.49) and 

(2.50). Described iterative process continues as long as the results of the 

calculation for both FP calculation algorithms differ less than a prescribed 

accuracy. Thus, the FP coaxial model and boundary value problems (2.49) and 

(2.50) complement each other in solving the axisymmetric problem, eliminating 

the "alignment" on the results of the one-dimensional calculation and more 

adequately assess the value of disposable heat drop of FP stages. 

It should be noted that the numerical implementation of the axisymmetric 

mathematical model of the working fluid flow in the FP in the form of alternate 
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use of coaxial mathematical model and boundary problems, can with a high 

degree of adequacy and accuracy to model the processes in the FP with stages 

with relatively long blades and having a twisted crowns substantially different 

from the law constrcu . As an example, in Fig. 2.14 are shown the shape of 

the flow lines resulting from the calculation of LPC FP of powerful steam 

turbine using the above axisymmetric mathematical model. 

 

Figure 2.14  Stream lines of the flow in the powerful steam turbine LPC FP. 

2.2.5  Cascades Flow Calculation 

For the design of high efficiency axial flow turbines flow path it is important 

to have accurate, reliable and fast method for calculation of cascade flow and 

friction loss on the profile surfaces. 

In the calculation of subsonic flows of an ideal liquid in the cascades long 

used an approach based on the reduction of partial differential equations to 

Fredholm integral equation of the 1-st or 2-nd kind [8, 22]. Available numerical 

implementation of solutions to these equations are facing a number of problems 
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that do not allow a sufficient degree of reliability or accuracy of the calculated 

arbitrary configuration cascades. 

For example, for a long time, we used the method of calculation [22] reduces 

to the solution of the integral equation of the second kind with respect to the 

speed potential. It is possible to solve a number of important practical problems 

of cascade optimization, but had important shortcomings: the complexity of the 

integral equation kernel normalization, which led to difficulties in calculating 

thin and strongly curved profiles, as well as the need for numerical 

differentiation calculated potentials, which brings an additional error in the 

profile velocity distribution. 

Later, we developed a method for cascades potential flow numerical 

calculating with an approximate view of the ideal gas compressibility based on 

the solution of the Fredholm equation of the 2-nd kind with respect to speed on 

the rigid surface, and a program for the PC is designed to work interactively. 

Friction loss on the profile is carried out by calculating the compressible 

laminar, transitional and turbulent boundary layers using one-parameter 

Loitsiansky method [23]. To improve the accuracy of the results obtained on the 

basis of the recommendations given in the literature, calculated buckling points 

and end of the transition from laminar to turbulent boundary layer depending on 

the pressure gradient, the degree of free-stream turbulence and of profile surface 

roughness. 

The developed algorithms for an ideal fluid flow calculation in the cascade 

and the boundary layer on the surface of the profile give a good qualitative and 

quantitative agreement between the calculated and experimental data for 

different types of cascades at different inlet angles, relative pitch, Mach and 

Reynolds numbers, characterized by high speed and are therefore suitable for 

use in problems of optimizing the axial turbomachinery blades shape. 
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2.2.6  Computational Fluid Dynamics Methods 

Aerodynamic optimization of turbine cascades is directed search a large 

number (hundreds to thousands) variants for their geometry, which increases 

with the number of variable parameters. The most reliable source of objective 

data on the flow of gas in a turbine cascade – physical experiment – obviously 

can not provide a sufficiently deep extreme. 

Therefore, currently in the works for aerodynamic optimization it is the most 

popular approach in which to obtain data on the nature and parameters of the 

flow of the working fluid in the tested inter-blade channels numerically solve 

the Navier-Stokes equations, or their modifications [24]. 

Navier-Stokes equations written in conservative form is as follows: 

 i i

i i

F GU
B

t x x

 
  

  
, (2.69) 
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. 

Since the analytical solution of this system of equations associated with 

insurmountable mathematical difficulties, such a direction as computational 

fluid dynamics (CFD) arose, which deals with the numerical solution of the 

Navier-Stokes equations. The numerical solution of the equations of fluid 

dynamics involves replacing the differential equations of discrete analogs. The 

main criteria for the quality of the sampling scheme are: stability, convergence, 

lack of nonphysical oscillations. Computational fluid dynamics is a separate 

discipline, distinct from theoretical and experimental fluid dynamics and 

complement them. It has its own methods, its own sphere of applications, and 

its own difficulties. 
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Given the speed of modern computers, the most appropriate approach is 

based on a system of Reynolds-averaged Navier-Stokes (RANS) equations. It 

involves some additional turbulence modeling using some complimentary to the 

system (2.69) equations, which are called turbulence model. 

The reliability obtained by the CFD results requires a separate analysis. As an 

example, compare the results of experimental studies of stages with 3.6D l   

(Fig. 2.15–2.17) with the calculations in one-dimensional, axisym-metric (for 

gaps) and 3D CFD statements [19]. 

Table 2.1  Main parameters of the test stages. 

Parameter Value 

Stage design MI MII 

Inlet pressure, Pa 117000 130000 

Inlet temperature, K 373 373 

Outlet pressure, Pa 100000 100000 

Rotation frequency, 1/s 7311 8212 

Nozzle vane mean diameter, m 0.2978 0.2978 

Nozzle vane length, m 0.0822 0.0822 

Blade mean diameter, m 0.2986 0.2986 

Blade length, m 0.0854 0.0854 

Nozzle vane outlet gauging angle near hub, deg. 20 17.2 

at mean radius, deg. 24 17.5 

at peripheral radius, deg. 28 17.8 

Blade outlet gauging angle near hub, deg. 32 41 

at mean radius, deg. 29.7 26 

at peripheral radius, deg. 26 19 
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a b 

Figure 2.15  Sketches of MI (left) and MII (right) stage design (a) and  

stage MI blades (b). 

 

 

Figure 2.16  Computation vs experiment (comparison for stage MI). 

Flow parameters distribution along nozzle vane and blade height: 

a – reaction; b – axial velocity component after nozzle vane; 

c – tangential velocity component after nozzle vane; d – nozzle vane velocity coefficient; 

e – blade exit flow angle in relative motion; f – axial velocity component after blade 
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Figure 2.17  Computation vs experiment (comparison for stage MII). 

Flow parameters distribution along nozzle vane and blade height: 

a – reaction; b – axial velocity component after nozzle vane; 

c – tangential velocity component after nozzle vane; d – nozzle vane velocity coefficient; 

e – blade exit flow angle in relative motion; 

f – axial velocity component after blade 
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Table 2.2  Comparison of stages MI and MII parameters at minimum radial clearance. 

Parameter 

Stage MI Stage MII 

2D 

AxSTREAM 

3D 

CFX 
Experiment 

2D 

AxSTREAM 

3D 

CFX 
Experiment 

 0 opt
u C  0.6 0.627 0.62 0.55 0.550 0.55 

, %s  3.5 4.0 2.7 4.9 5.2 3.1 

, %r  2.2 2.1 2.4 2.1 3.0 4.6 

, %out  10.8 13.9 11.9 6.8 9.0 7 

, %i  82.3 80.0 83 84.9 82.8 85.3 

It was shown that proper unidimensional and axisymmetric models combined 

with proven empiric methods of loss calculation provide the accuracy of the 

turbine flow path computation sufficient for optimization procedures in a bulk 

of practice valuable cases. Comparative analysis of the experiment and 

simulation results indicates an untimely nature of the assertion that 3D CFD 

analysis is already capable to substitute physical experiments. 

2.3  Geometric and Strength Model 

2.3.1  Statistical Evaluation of Geometric Characteristics of the 

Cascade Profiles 

For accurate estimates of the size of the blades, which takes into account not 

only their aerodynamic properties and conditions of safe operation, it is required 

to calculate the set of dependent geometric characteristics of the profiles (DGCP) 

as a function of a number of parameters that determine the shape of the profile. 

When the shape of the profiles is not yet known, to assess DGCP should use 

statistical relations. From the literature are known attempts to solve a similar 

problem [25, 26] on the basis of the regression analysis. 

The DGCP include: f  – area; 
eI  and 

nI  – minimum and maximum moments 

of inertia; 
uI  – moment of inertia about an axis passing through the center of 

gravity of the cross section parallel to the axis of rotation u;  – the angle 

between the central axis of the minimum moment of inertia and the axis u; 
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,gc gcX Y  – the coordinates of the center of gravity; 
i  – stagger angle; ,e ssl l  – 

the distance from the outermost points of the edges and suction side to the axis 

E; ,in outl l  – the distance from the outermost points of the edges to the axis N; 

, , ,e ss in outW W W W  – moments of profile resistance. 

The listed DGCP values most essentially dependent on the following 

independent parameters (IGCP) 1g  – geometric entry angle; 
2eff  – effective 

exit angle; b – chord; t b  – relative pitch; 
1 2,r r  – edges radii; 

1 2,   – wedge 

angles. 

Formal macromodelling techniques usage tends to reduce the IGCP number, 

taking into account only meaningful and independent parameters. In this case, 

you can exclude from consideration the magnitude of 
1 2 2, ,r r  , taking them 

equal 
1 0.03r b ; 

2 0.01r b ;  2 1 10.014 0.2K    , 1 3K  , 

depending on the type of profile [26]. 

We obtained basic statistical DGCP relationships using profiles class, designed 

on the basis of geometric quality criteria – a minimum of maximum curvature of 

high order power polynomials [15] involving the formal macromodelling 

technique. Approximation relations or formal macromodel (FMM) are obtained in 

the form of a complete quadratic polynomial of the form (1.2): 

   
1

0

1 1 1

n n n

i ii i i ij i j

i i j i

y q A A A q q A q q


   

     . 

The response function  y q  values (DGCP) corresponding to the points of a 

formal macromodelling method, calculated by the mathematical model of 

cascades profiling using geometric quality criteria. 
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Analysis of profiles used in turbine building reveals, that two of remaining 

four IGCP 1g  and t/b highly correlated. 

It is advisable to use in place of these factors their counterparts – the flow 

rotation angle in the cascade  and the parameter t t b T   , where 

1.08 0.004T    – linear regression equation that specifies the statistical 

relationship between the relative pitch and angle of rotation of the flow, the 

resulting data for typical turbine cascade. 

Thus, informal macromodelling as IGCP were taken:
2 1, , ,e t    , relatively 

in ranges 20…120, 10…30, 20…30, –0.2…0.2. In normalized form in the range 

of –1…1 the factors are calculated as follows: 

 2 1
1 2 3 4

20 2570
, , ,

50 10 5 0.2

e t
q q q q

   
    . (2.70) 

During macromodelling were designed 25 turbine cascades with 1b  and 

with IGCP values, corresponding to the points in the of numerical experiment 

plan, were calculated DGCP values and the dependencies on the form (1.2) built 

for them. Calculation of flow diagrams and loss factors confirms the high 

aerodynamic quality of the 25 profile cascades. 

In Tables 2.3, 2.4 the FMM coefficients and variance of the cascades DGCP 

FMM are given. In the tables FMM coefficients increased by 10
4
. 

Similar relationships were also obtained for a special class of nozzle profiles 

with an elongated front part [26]. 
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Table 2.3  DGCP macromodels coefficients. 

A(i, j)  ln F   ln eI   ln nI   ln uI   i
  

А(0) –26530 –87000 –53800 –64034 320 9010 

А(1) 4049.2 16769 4241.7 13055 –68.183 –3422.5 

А(2) –45 53.333 37.5 4423.8 –13.683 –1920.8 

А(3) 807.5 1200.8 579.17 727.58 –0.5833 –68.333 

А(4) –538.33 –1075 –228.33 –3982.6 83.917 726.67 

Table 2.3  DGCP macromodels coefficients (continuation). 

А(1, 1) 4716.7 6769.2 4024.2 6248.7 –162.02 –1454.6 

А(2, 2) 1207.9 2385.4 715.42 1000.2 4.7333 –342.08 

А(3, 3) 194.17 711.67 55.418 41.169 –15.867 81.666 

А(4, 4) –204.58 –542.08 –198.33 –1300.1 11.133 186.67 

А(1, 2) 562.5 602.5 690 –1472 –120.55 –567.5 

А(1, 3) 147.5 –367.5 175 148.5 25.25 –32.5 

А(1, 4) 572.5 1412.5 445 1584.8 30.25 –12.5 

А(2, 3) 342.5 552.5 180 53 21 –40 

А(2, 4) 810 2520 522.5 3917.8 –91.5 –400 

А(3, 4) –7.5 52.5 –2.5 –36.75 –2 12.5 

Table 2.4  DGCP macromodels coefficients (continuation). 

A(i, j) gcX  
gcY  

e
l  

ss
l  

in
l  

out
l  

А(0) 2927 5540 1371 882 3726 6090 

А(1) 1090.1 –213.75 1093.8 635.14 –63.5 165.75 

А(2) 976.42 –657.33 –25.508 –31.008 157.42 –99.667 

А(3) 49.417 2.0833 9.2333 47.708 –23.5 26 

А(4) –344.75 237.83 23.558 –32.825 –84.25 61.75 

А(1, 1) 433.04 –399.42 324.87 405.3 237.33 –207.75 

А(2, 2) 14.292 –135.04 93.692 142.72 –1.2918 –9.8752 

А(3, 3) –30.708 48.583 15.58 19.396 –5.668 9.8748 

А(4, 4) –65.958 34.958 –22.688 –29.929 20.042 18.5 

А(1, 2) –68.75 –500 4.275 51.4 227.5 –241.5 

А(1, 3) 19.5 4.75 31.05 29.6 –24.25 19 

А(1, 4) 38.5 118 61.825 61.375 –40.25 44.75 

А(2, 3) –5 –10 25.75 22.425 1.5 –3.5 

А(2, 4) 192 8.5 79 90.8 35.25 –13.5 

А(3, 4) –6.75 12 5 1.6 5.25 5 
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2.3.2  Strength Models 

On the choice of cascade’s optimal gas dynamic parameters significantly 

affect the strength limitations, which, in turn, is largely dependent on the flow 

path design. 

For example, the calculation of splitted diaphragms strength based on using a 

simplified scheme, according to which the diaphragm is considered as a      

semi-circle rod (band with a constant cross-section), loaded with unilateral 

uniform pressure and supported on the curved outer contour[27]. This approach 

allows us to evaluate the maximum stress in the diaphragm and is sufficient to 

assess the strength of the diaphragm at the stage of conceptual and technical 

design. 

Calculation of the blades strength is carried out using the beam theory that 

restrict computer time to evaluate the tensile and bending stress, for example, 

using statistical data on profiles, as shown in Section 2.3.1. 

To ensure the vibration reliability of blading, rotor blades requires detuning 

from resonance, i.e., the natural frequencies of the blades should not coincide 

with the frequency of the disturbing forces that are multiples of the frequency of 

rotation. The required for detuning dynamic (depending on rotation speed) the 

first natural frequency of the blade is defined by a simplified formula. 

2.4  Flow Path Elements Macromodelling 

Macromodels are dependencies of the "black box" type with a reduced 

number of internal relations. This is most convenient to create such dependence 

in the form of power polynomials. Obtaining formal macromodels (FMM) as a 

power polynomial based on the analysis of the results of numerical experiments 

conducted with the help of the original mathematical models (OMM). 

Therefore, the problem of formal macromodelling includes two subtasks: 
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1. The FMM structure determining. 

2. The numerical values of the FMM parameters (polynomial coefficients) 

finding. 

As is known, the accuracy of the polynomial and the region of its adequacy 

greatly depend on its structure and order. At the same time, obtaining polynomials 

of high degrees requires analysis of many variants of the investigated flow path 

elements, which leads to significant computer resources cost and complicates the 

process of calculating the coefficients of the polynomial. 

To create FMM it is advisable to use the mathematical apparatus of the 

design of experiment theory to significantly reduce the number of computing 

experiments with OMM, i.e. obtain sufficient information with a minimum 

dimension of the vector of observations Y  . We use two types of FMM – (1.2) 

and (1.12). To get them methods of the design of experiment theory applied 

(three-level Boxing-Benkin plans and saturated Rehtshafner’s plans) and cubic 

spline interpolation. 

In a particular implementation of a formal macromodelling methodology 

need to perform the following steps: 

1) the choice of the IMM of the flow path element; 

2) the appointment of its performance criteria; 

3) choice of OMM parameters, whose influence on performance criteria of 

the flow path element is necessary to study in detail and the formation on their 

basis vector of varied parameters Q ; 

4) macromodelling area appointment (ranges of components of the vector q


); 

5) DOE matrix formation; 



◆◇     Chapter 2  Mathematical Modelling of the Turbomachine Flow Path Elements     ◇◆ 
 

http://www.sciencepublishinggroup.com 105 

6) active numerical experiments conducting and evaluation of the 

components of observations vector Y  for each criterion; 

7) the processing of the experimental results and the determination of the 

FMM coefficients. 

Steps 1–4 are not amenable to formalization and their implementation should 

take into account the specific features of macromodelling objects and existing 

experience of designing elements of axial turbines flow path. 

2.5  Thermal Cycles Modelling 

Imagine the process of analyzing the thermal cycle in the example of gas 

turbine unit (GTU) (Fig. 2.18) in the following sequence: 

 the structure diagram presentation as a set of standard elements and 

connections between them; 

 entering the input data on the elements; 

 generation of computer code in the internal programming language based 

on the chosen problem statement; 

 processing; 

 post-processing and analysis of results. 
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Figure 2.18  Thermal schemes graphical interactive editor window. 

This sequence of actions combines a high degree of automation of routine 

operations (input-output and storage of data, programming, presentation of the 

results of calculations, and so on) with the possibility of human intervention in 

the process of calculations at any stage (editing of data, changing the program 

code in the domestic language, writing additional custom code for non-standard 

calculations performing, etc.). 

A key element of the algorithm, allows it to compile a more or less broad 

class of configurations, is the stage of code generation, based on a graphic 

description of the scheme (a set of elements and relations between them), i.e., 

parsing. The problem is that it is pointless to try to solve the problem of the 

scheme calculation for the arbitrary, sometimes physically implemented 

schemes. Therefore, the goal of the analyzer is also identification of 

semantically incorrect scheme descriptions using heuristics embedded in it. 

The analyzer’s task is to draw up code for solving the system of algebraic 

equations that describe the problems of cycle analysis in one of the selected 

language. This system of equations must be linked to energy balances of 
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different types (for example, flows of working fluids or shafts power) and, 

therefore, from the graph scheme should provide specific elements chains and 

use them to make a chain of appropriate formulas. Code generation is based on 

the information on the scheme chosen by the parser from the internal data 

structures of elements and connections. 

This information includes, in particular, the total number of elements in the 

cycle, the number of elements of each type, chain elements attached to one shaft, 

the chain members having regard for air and gas. In addition, there is the total 

number of connections found and created a list of links with the types and 

numbers of adjacent elements, as well as the types of energy source. For the 

efficient operation of the analyzer is required to implement rather complex and 

flexible dynamic data structure to describe the types and implementation elements, 

links, as well as types and implementations of data elements and relationships. 

Cycle element is an object that is indivisible (in terms of the cycle calculation) 

for modeling processes of energy conversion and exchange or energy flows. In 

fact the element is quite complex and multifaceted structure which includes 

information about the external and the internal representation of its 

mathematical model, a set of data divided into input and output (and, depending 

on the type of problem to be solved), a list of associated interface functions etc. 

The cycle consists of elements and links between them. Cycle description is 

stored in a special text file format that contains data by elements, links and 

service information. Since a sufficiently large number of elements in the scheme, 

the appointment of links is time-consuming operation, which requires a lot of 

attention to the formation of the schema file, is desirable to have an interactive 

graphical schema editor, with which the elements and their relationship just 

"drawn" on the screen (Fig. 2.18). During the graphical information and 

elements data input the online preliminary control of the integrity and 

correctness of the scheme is performed. 
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Schema data includes collection of data of its elements and links that are 

relevant to the mathematical modeling of physical processes occurring in the 

cycle. In connection with this set of data is determined by the requirements of the 

codes, implementing these models – in our case – a "closed" to the user kernel. 

External modules available to the user (files of elements and schemes, interpreted 

code), when changed the set of data of a particular element, should be modified, 

preferably through means provided by the system or, in extreme cases, manually. 

The program of thermal schemes calculation organized in such a way that the 

graphical user interface and substantive part (solver) would be relatively 

independent of each other. This makes it possible, on the one hand, to use a 

solver as a standalone program or as part of other systems, and the other – to 

connect other solvers to the interface for pre- and post-processing. Therefore 

solver and interface program have independent data structures. 

Solver is a dynamic link library that provides a set of procedures, sufficient for 

data input and output, as well as organizing the process of setting up and solving 

the balance equations of thermal cycle. The interpreter has the ability to access 

these functions, and thus becomes a real calculation procedure described above. 

Mathematical modeling of cycles based on predetermined mathematical 

models of its constituent elements. This approach usually allows to simplify and 

speed up the calculations. Each of the circuit elements is a more or less 

complicated object, which can be described with varying degrees of detail. 

There are significant differences in the simulation of the elements in the 

schemes calculation at design and off-design operation modes. In the latter case, 

the properties of the elements are given as characteristics (maps), i.e. 

dependency of the output parameters of the regime one. In some cases the 

characteristics building (especially for the compressors) is a fairly                

time-consuming task. 
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