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Introduction 

There have been many comprehensive studies on the use of nanoparticles in 

biomedical applications over the past decade. Some of these include drug and 

gene delivery, diagnosis and treatment of cancer and biosensors. The use of 

nanoparticles helps improve the delivery of anticancer drugs to cancer cells. 

One of the underlying problems of anticancer drugs is the narrow therapeutic 

index, accompanied by severe cumulative and acute toxicities in healthy tissues. 

(1-5) There are also nanoparticles which are used in preclinical and in vitro 

studies in order to enhance the delivery of cytotoxic chemotherapeutic agents to 

cancer cells and to decrease toxicity by restricting drug exposure to healthy 

tissues. For a better management of chemotherapy-induced cytotoxicity in 

cancers (lung, colon, squamous, pancreas), hydroxycamptothecin, 5-fluorouracil, 

docetaxel and gemcitabine encapsulated nanoparticles have been used in 

preclinical studies. (1) 

Besides their therapeutic use, nanoparticles might improve cancer detection 

and diagnosis. Magnetic iron oxide nanoparticles have proved to improve the 

performance of magnetic resonance imaging (MRI) in diagnosing cancers, as 

compared to the current cancer imaging contrast agents. (1, 6-9)              

Protein-targeted antibody-conjugated magnetic iron oxide nanoparticles 

expressed on the surface of human cancer cells may further improve the 

accuracy of MRI for the early detection of cancer. Models of                   
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fluorine-18-deoxyglucose encapsulated carbon and polymeric nanoparticles 

have been examined in preclinical studies in order to increase tumor diagnosis 

and detection rates using positron emission tomography. (10-12) Carbon 

nanotubes have been used for protein and gene delivery via non-specific 

endocytosis in cancer cells. (13-19) As other cytotoxic chemotherapy agents, 

gold and other metal nanoparticles have proved to increase the therapeutic 

efficacy of external beam therapy in preclinical models. There will be further 

studies on the use of nanoparticles as vectors for the delivery of biological and 

pharmacological agents. (20-28) 

Besides their use in the delivery of cytotoxic and biological agents, 

nanoparticles may also be used as anticancer therapeutics. Gold nanoparticles 

with a diameter of 5–10 nm have innate antiangiogenic properties. These gold 

nanoparticles bind to pro-angiogenic heparin- binding growth factors, such as 

VEGF165 and bFGF, and inhibit their activity. In a preclinical model of ovarian 

cancer, gold nanoparticles demonstrated to reduce ascites, inhibit the 

Proliferation of multiple myeloma cells and induce apoptosis in B-cell chronic 

lymphocytic leukemia. (29) 

Semiconductor quantum dots surface modification, known for their emission 

of fluorescence when excited at the appropriate wavelength, is investigated for a 

better detection of lymph nodes and other sites of metastases during surgical 

procedures. Tumor-specific peptide or antibody-conjugated quantum dots may 

enhance tumor targeting and increase the diagnostic accuracy of this optical 

imaging technique. There are various studies on the potential of imaging 

techniques using selective targeted fluorescent nanoparticles to allow in vivo 

localization of cancer cells. There is hope that such imaging techniques will 

increase the accuracy of different types of diagnostic imaging modalities used 

for cancer detection and treatment. TNF-alpha- coated colloidal gold 
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nanoparticles are used in early phase cancer clinical trials. (30) Preclinical 

studies showed that the delivery of tumor necrosis factor-alpha (TNF-α) to 

malignant tumors was improved by the use of the nanoparticle-based drug 

delivery system, preventing systemic toxicities that usually restrict the clinical 

utility of this biological agent. The conjugation of nanoparticles to targeting 

agents is also researched to deliver gene therapy payloads into cancer cells. (30) 

Lastly, immunocomplexes of antibody-coated gold nanoparticles have proved 

to enhance the detection of certain serum tumor markers, such as 

carcinoembryonic antigen (CEA), carcinoma antigen 125 (CA125), and 

carbohydrate antigen 19-9 (CA19-9), more rapidly and more accurately than 

currently available techniques. There will definitely be extensive use of 

nanoparticles to enhance cancer detection. (31) 

The development of nanoparticles for use in nanomedicine is also in progress 

and has grown significantly over the past years. The National Science Foundation 

(NSF) estimated that between 2010 and 2015, the market for pharmaceutical 

nanoproducts will be of approximately US$ 180 billion per year. (32) Moreover, 

nanoparticles are already largely dispersed in the air and in hundreds of 

nanoparticle-containing products on the market, including cosmetics, printer 

toners, varnishes, drugs and even food. However, there is little knowledge on the 

risks and toxicity of these nanomaterials. Because of the extensive use of 

nanoparticles in various fields, there is also a growing concern on their 

unexpected adverse effects, both academically and socially. Some studies have 

examined the toxicity of nanoparticles based on their shape, size, surface 

chemistry, chemical composition, surface activity and solubility. The use of 

nanoparticles in various fields has been recommended as a result of these initial 

toxicity studies. Still, it is necessary to rigorously evaluate their toxicity in order 

to legislate the safe use of all types of nanoparticles. Even if nanoparticles and 
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their effects on the human body are of great scientific interest, there is no 

standardized procedure framework for the evaluation of their toxicity. (33-36) 

Cytotoxicity 

Cytotoxicity is the property of a chemical compound (food, cosmetics or 

pharmaceuticals) or mediator cell (cytotoxic T cell) to kill cells. (37) 

Compared to necrosis and apoptosis, cytotoxicity does not indicate a distinct 

cell death mechanism. T cell-mediated cytotoxicity or natural killer                 

cell-mediated cytotoxicity incorporate aspects of both necrosis and apoptosis. 

There has been an exponential growth of apoptosis publications over the past 

years. About 30 new molecules have been discovered, all related to the 

initiation and regulation of apoptosis. Other 20 molecules, related to DNA 

signalling to DNA replication, transcription or repair, have been demonstrated 

to affect apoptosis regulation. (38) 

Both necrosis and apoptosis can cause cell death. Moreover, certain chemical 

compounds and cells are toxic to cells and cause their death. (39) 

Necrosis and Apoptosis 

Necrosis (unprogrammed cell death) is the pathological process due to cell 

exposure to exposed to acute physical or chemical events. 

Apoptosis (programmed cell death) is the physiological process resulting in 

the elimination of unwanted or useless cells during their development or other 

biochemical events. (40) 
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Some of the main morphological features are cell shrinkage, with violent 

bubbling and surface blebbing, resulting in cell separation into clusters of 

membrane-bound bodies. 

Organelle structure is usually unharmed, but the nucleus shows chromatin 

condensation, initiated at sublamellar foci and often generating heavily 

heterochromatic regions. 

Changes in cell surface molecules determine the instantaneous recognition 

and phagocytosis of apoptotic cells by their neighbours. Therefore, many cells 

can quickly disappear from tissues without much evidence provided by 

conventional microscopic samples. This process accounts for cell death, normal 

tissue homeostasis, endocrine atrophy, negative selection in immune system and 

considerable T-cell death. It is also responsible for extensive cell death after 

exposure to cytotoxic compounds, hypoxia or viral infection. It is an important 

factor in the kinetics of tumor cell growth and regression. (41) 

Many effects of cancer therapeutic agents are displayed through initiation of 

apoptosis and carcinogenesis itself seems to depend on selective, critical failure 

of apoptosis that allows cell survival after DNA damage and mutagenesis. 

Caspase gene CED3 is the prototype of the family of cysteine proteases 

necessary for mammalian apoptosis, known for their predilection for cutting 

adjacent to aspartate residues. Mammalian caspases appear as autocatalytic 

cascades and some members (caspase 8 or FLICE) are "apical" and more 

susceptible for endogenous regulatory protein changes, while others (caspase 3 – 

also known as CPP32, Yama and apopain) achieve final death. Studies on caspase 

substrates give details on how cells destroy their structure and function. (42) 

Examples of such substrates include cytoskeletal proteins - actin and fodrin 
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and the nuclear lamins, but also a multitude of regulatory and chaperone-like 

proteins with cleavage and functional alteration. A good example is ICAD 

(inhibitor of caspase-activated deoxyribonuclease), the nuclease chaperone, 

whose cleavage allows distinctive apoptotic nuclease, responsible for chromatin 

cleavage into oligonucleosomal fragments. (43) 

Caspases seem to appear as inactive proenzymes in most if not all cells, 

undergoing activation by cleavage. 

Granzyme B is a protease delivered to T cell-target cells which triggers these 

latent proenzymes and constitues one of the killing mechanisms of cytotoxic T 

cells. (44) 

There are endogenous triggers as well, such as C. elegans CED4 and its 

protein homologue, of mitochondrial origin, possibly initiating apoptosis in 

mammalian cells, inhibiting the cellular energy metabolism, causing critical cell 

injury and affecting mitochondrial respiration. Thus, 

CED4 may interact with agents associated with mitochondrial injury, such as 

calcium and reactive oxygen species, and initiate apoptosis. (45) 

Another mitochondrial protein of great significance in initiating apoptosis is 

the mammalian CED-9 homologue BCL-2. BCL-2 has the tertiary structure 

typical for a bacterial pore-forming protein, targeted to the mitochondrial outer 

membrane. It abrogates apoptosis, probably by binding CED4 and the            

Bcl-2–associated X protein (BAX) and forming heterodimers. Like CED4, this 

is another killer protein. BCL2 and BAX have structurally and functionally 

similar homologues and are also inserted into the outer nuclear membrane 

(ONM) and the endoplasmic reticulum (ER). (46) 

There are other examples of death receptor signal transducers. 
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P53 is a tumor suppressive protein activated by DNA damage which triggers 

apoptosis. This can occur by transcriptional activation of BAX. (47) 

Ceramide, found in cell membrane, can lead to the activation of acid 

sphingomyelinase in the cell, signaling plasma membrane damage. (48) 

Tumor necrosis factor receptors (fas/apo-1/CD95, TNF receptor I) mediate 

the activation of caspase. (49) 

When these receptors bind to a ligand, they receive a death stimulus and 

initiate a series of protein-protein interactions, forming the death inducing 

signalling complex (DISC) that recruits and activates caspases. 

These mechanisms connecting cell injury to apoptosis are determined by the 

activation of preformed proteins. Transcriptional mechanisms can also initiate 

apoptosis, but not much is known about them. 

A good example is cell killing is that induced by the Drosophila gene reaper, 

transcriptionally activated two hours before injury-induced death in the 

organism. Apoptosis in Drosophila can occur without reaper transactivation, but 

with increased stimuli, showing the existance of a threshold for reaper-induced 

apoptosis. (50) 

Another death initiating gene is the immediate-early gene, c-myc. 

Transcriptional activation of c- myc induces DNA synthesis and, when lacking 

concurrent cytokine support, c-myc activation initiates apoptosis. This can be 

seen as a threshold regulatory mechanism, as c-myc expression increases the 

need for insulin-like growth factor 1, required for survival. (51) 

Studies on cell transformation by viruses prove the significance of these 

apoptosis pathways. These strong survivors have found many ways of escaping 
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cell death. Therefore, papovavirus SV40, adenovirus type 12, Human Papilloma 

Virus type 16 and Epstein-Barr Virus, all express proteins that inactivate 

apoptosis by p53 inactivation or BAX binding. (52) Lytic viruses also possess 

death postponing mechanisms, such as the cowpox virus serpin crmA and the 

baculovirus p35 caspase inhibitors. (53) 

Differences Between Necrosis and Apoptosis 

Necrosis and apoptosis are different in terms of morphology and 

biochemistry. (54) Necrosis is induced by cell exposure to extreme 

physiological factors (hypothermia, hypoxia) which may result in plasma 

membrane damage. Under physiological conditions, direct plasma membrane 

damage is induced by high doses of nanoparticles. Necrosis brings along some 

major morphological changes, such as cell swelling, cytoplasmic vacuoles, 

distended endoplasmic reticulum, cytoplasmic blebbing, condensed, swollen or 

ruptured mitochondria, ribosome disaggregation and detachment, organelle 

disruption, swollen and ruptured lysosomes, and finally cell membrane 

disruption. (55) There is no inflammatory reaction as apoptotic cells do not 

deliver their chemical constituents into the surrounding interstitial tissue and 

rapidly undergo phagocytosis by macrophages or adjacent healthy cells. (56) 

Necrosis is determined by cell exposure to severe deviation from physiological 

conditions, resulting in plasma membrane damage. It is characterized by cell 

swelling and organelle disruption, with little initial change in chromatin. Due to 

final plasma membrane rupture, cytoplasmic contents including lysosomal 

enzymes are delivered into the extracellular fluid. Thus, there is a correlation 

between in vivo necrotic cell death and extensive tissue damage, determining a 

strong inflammatory response. (57) 

On the other side, apoptosis occurs under normal physiological conditions, 
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the cell being an active participant in its own programmed death. It mostly 

appears during normal cell turnover and tissue homeostasis, embryogenesis, 

induction and maintenance of immune tolerance, development of the nervous 

system and endocrine atrophy. (58) There are typical morphological and 

biochemical features of cells undergoing apoptosis. Morphological changes 

occuring during apoptosis have been observed by light and electron microscopy. 

Cell shrinkage and pyknosis can be identified by light microscopy in the early 

phases of apoptosis. (59) Cell shrinkage is represented by smaller cells, dense 

cytoplasm and tightly packed organelles. Pyknosis results from chromatin 

condensation, which is the most typical characteristic of apoptosis. Histologic 

examination of samples stained with hematoxylin and eosin shows that 

apoptosis involves both individual cells and small cell clusters. The image of 

the apoptotic cell is that of a dark round or oval eosinophilic mass with dense 

purple fragments of nuclear chromatin. (57) Subcellular changes can better be 

identifed by electron microscopy. In the early phase of chromatin condensation, 

the electron and nuclear dense material tipically accumulates peripherally under 

the nuclear membrane, with possible nuclei of uniform density. Macrophages or 

adjacent epithelial cells quickly recognise and phagocytose these apoptotic 

bodies in vivo. This efficient mechanism of in vivo removal of apoptotic cells 

does not evoke any inflammatory response. Apoptotic bodies and remaining cell 

fragments ultimately swell and lyse in vitro. This final phase of in vitro cell 

death is called secondary necrosis or apoptotic necrosis. Apoptosis can be 

initiated by both transcriptional and non-transcriptional pathways which have 

similar effector mechanisms mediated by caspases and regulated by BCL2 

family members. Low doses determine a variety of harmful stimuli. 

Nanoparticles, heat, radiation, hypoxia and cytotoxic anticancer drugs can 

initiate apoptosis but can also induce serious necrosis. (59-64) The coordinated 

energy-dependent process of apoptosis implies the activation of caspases, a 
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family of cysteine proteases, together with a series of events that correlate initial 

stimuli with final cell death. 

Cell Proliferation Assay MTT Assay 

Introduction 

Cell viability and proliferation assays are the ground for many in vitro studies 

on the response of cell populations to external factors. Cell growth 

determination is conventionally accomplished by counting viable cells after 

vital dye staining. There have been different approaches. Trypan blue staining is 

a simple method of assessing cell membrane integrity (estimating cell 

proliferation or cell death) but it is not sensitive and cannot be adapted for high- 

throughput screening (HTS). A radioactive uptake assay, such as thymidine 

incorporation assay, is accurate but also time-consuming and requires handling 

of radioactive substances. (65) The reduction of tetrazolium salts is a widely 

accepted procedure for measuring cell proliferation. (66) Yellow tetrazolium 

MTT (3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide), a      

well-known tetrazole, is reduced to purple formazan in living cell mitochondria. 

The absorbance of this colored solution can be assessed by spectrophotometry 

(between 500 and 600 nm wavelength). The absorption maximum depends on 

the solvent employed. This reduction only occurs when mitochondrial reductase 

enzymes are active, being directly related to the number of viable (living) cells. 

When the amount of purple formazan produced by treated cells is compared 

with that produced by untreated cells, the effectiveness of the death-inducing 

agent can be understood by creating a dose-response curve. MTT solutions 

absorbed in tissue culture media or balanced salt solutions without phenol red, 

had a yellowish color. Mitochondrial dehydrogenases of viable cells are 
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converted to purple MTT formazan crystals by cleavage of the tetrazolium ring, 

insoluble in aqueous solutions. The crystals can be solubilized in acidified 

isopropanol. The resulting purple solution is spectrophotometrically measured. 

An increase in cell number leads to an increase in the amount of MTT-formazan 

formed and in absorbance. (67) 

The MTT assay measures the cell proliferation rate and the reduction of cell 

viability when metabolic events induce apoptosis or necrosis. There small 

number of phases in this assay facilitates sample processing. The MTT reagent 

used yield low background absorbance. 

The correlation between cell number and produced signal is assessed for each 

type of cell, thus allowing an accurate evaluation of changes in cell proliferation 

rate. (66) 

Protease Activity Assays 

Caspase activation is a unique characteristic of early stage apoptosis. 

Members of the ICE/CED-3 family of aspartate-specific cysteine proteases are 

important intermediaries of the complex biochemical events accompanying 

apoptosis. Caspase cleavage sites are marked by three to four amino acids 

followed by an aspartate residue. Caspases are normally synthesized as inactive 

precursors (procaspases). Caspases are activated by ihibitor release or cofactor 

binding through cleavage at internal aspartate residues determined by either 

autocatalysis or the action of another protease. There is a wide selection of 

fluorogenic caspase substrates to choose from. (68) 

Caspase-3 (CPP32/apopain) plays a dominant role in the apoptosis pathway, 

amplifying the signal from initiator caspases (such as caspase-8) and showing 

full commitment to cell disaggregation. Besides cleaving other caspases in the 
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cascade, caspase-3 has proven to cleave other proteins, such as poly           

(ADP-ribose) polymerase (PARP), DNA-dependent protein kinase, protein 

kinase Cδ and actin. (69) 

CellEvent Caspase-3/7 Green detection reagent (C10423) is a new generation 

of caspase substrates, very useful for the study of apoptosis. The cell-permeant 

CellEvent reagent consists of the four–amino acid peptide DEVD (containing 

the recognition site for caspases 3 and 7) conjugated to a nucleic acid–binding 

dye. As DEVD inhibits the ability of the dye to bind to DNA, CellEvent 

Caspase-3/7 Green detection reagent is basically nonfluorescent. In the presence 

of activated caspase 3/7, the dye is cleaved from the DEVD peptide and binds 

DNA, producing a bright green-fluorescent signal (absorption/emission maxima 

~502/530 nm) suggesting apoptosis. This powerful assay is highly specific for 

caspase 3/7 activation and it detects an almost total inhibition of the CellEvent 

Caspase-3/7 Green detection reagent signal in the cells pretreated with a caspase 

3/7 inhibitor. (70) 

Assays based on CellEvent Caspase-3/7 Green Apoptotic Detection Reagents 

can be accomplished easily. Cells are incubated with the CellEvent reagent in 

complete culture medium for 30 minutes and then evaluated using fluorescence 

microscopy (high-content screening). While apoptotic cells showing activation 

of caspase 3/7 exhibit bright green-fluorescent nuclei, cells without activation of 

caspase 3/7 exhibit minimal fluorescence. Cleaved reagents identifiy caspase 

3/7–positive cell nuclei and thus, the stain can supply data on nuclear 

morphology, including condensed nuclei typical of late‑stage apoptosis. 

One of the main benefits of assays based on CellEvent caspase-3/7 green 

detection reagent is that there is no need for washing, which results in the 

protection of sensitive apoptotic cells that are typically lost during these rinses. 

Apoptotic cell loss during washing can generate the underestimation of the 
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extent of apoptosis in the sample, resulting in poor assay accuracy. Moreover, 

formaldehyde fixation and detergent permeabilization do not harm the 

fluorescent signal resulting from the cleavage of CellEvent Caspase-3/7 

detection reagent, giving flexibility for conducting endpoint assays and 

investigating other proteins using immunocytochemical methods. 

One of the first methods employing flow cytometry was cell cycle analysis by 

quantitation of DNA content. Various DNA binding dyes can be used to stain the 

DNA of mammalian, yeast, plant or bacterial cells. These dyes are stoichiometric 

meaning that they bind according to the amount of DNA present in the cell. Thus, 

cells in S phase will have more DNA than cells in G1 phase. They will take up 

equivalently more dye and will be of brighter fluorescence until they have 

doubled their DNA content. The cells in G2 phase will be approximately twice as 

bright as cells in G1 phase. Apoptosis is a classical form of programmed cell 

death in eukaryotes, of great importance during embryogenesis, in the 

homeostatic control of tissue integrity, tumor regression and immune response 

development. When receiving specific signals, several distinctive biochemical 

and morphological changes take place inside the cell. A family of proteins known 

as caspases, and perhaps other proteases, are activated in the early stages of 

apoptosis. These proteins divide key cellular substrates that are required for 

normal cellular function, including structural proteins in the cytoskeleton and 

nuclear proteins. Caspases can also activate other degrading enzymes such as 

DNases, which begin to cause DNA fragmentation at the linker regions between 

oligonucleosomes. These biochemical events result in morphological changes 

inside the cell and extensive DNA fragmentation. The products of DNA 

fragmentation are nucleosomal and oligonucleosomal DNA fragments (180 bp 

and multiples of 180 bp), generating a characteristic ‗‗ladder‘‘ pattern during 

agarose gel electrophoresis. Due to the partially damaged DNA from apoptotic 

cells, the fraction of low-molecular-weight DNA can be extracted, whereas the 
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non-damaged DNA remains in the cell nucleus. Because DNA fragments are lost 

from apoptotic nuclei and nuclear DNA content can be easily measured by flow 

cytometry, after nucleic acid staining with specific fluorochromes, there are 

several methods to assess apoptotic nuclei from a quantitative point of view. 

When staining apoptotic cells with PI and analyzing them with a flow cytometer, 

they exhibit a broad hypodiploid (sub-G1) peak, which can easily be 

differentiated from the narrow peak of cells with normal (diploid) DNA content in 

the red fluorescence channels. This method has a few advantages. It provides (i) a 

rapid, reliable and reproducible estimation of apoptosis, (ii) a simultaneous 

analysis of cell-cycle parameters of surviving cells and (iii) when necessary, a 

simultaneous analysis of cell surface antigens recognized by fluorescein 

isothiocyanate- or Alexa 488-conjugated monoclonal antibodies and the extent 

of apoptosis. However, there are many types of apoptosis and the extensive 

DNA fragmentation and the loss of DNA fragments are not universal in 

apoptotic death. (71) Moreover, necrotic cells sometimes exhibit certain degrees 

of DNA fragmentation that might result in hypodiploid nuclei. (72) In addition, 

besides apoptotic cells, the ‗sub-G1‘ peak can display nuclear fragments, clumps 

of chromosomes, micronuclei or nuclei with normal DNA content but different 

chromatin structure and diminished accessibility of fluorochrome to DNA         

(i.e., cells undergoing differentiation). In conclusion, the presence of a 

hypodiploid DNA peak is not an authentic proof of apoptotic death. In order to 

confirm apoptosis, use morphological (microscopic observation of apoptotic 

bodies), biochemical (DNA ladder in agarose gel) or specific demonstration of 

DNA breaks (terminal deoxynucleotidyl transferase assay) before the quantitative 

analysis by flow cytometry. Another major issue in the quantitative assessment of 

apoptotic cells by flow cytometry is the differentiation between true apoptotic 

nuclei and nuclear debris. An appropiate determination of acquisition parameters 

(volume of particles, usually measured as forward scatter (FSC) and of diploid 
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DNA peak by using a calibration standard (DNA check beads), and negative and 

positive cell controls is essential before using the method for a cell line that has 

not been evaluated before. Keep in mind that apoptosis is a dynamic process and 

that there is a short ‗‗time-window‘‘ when apoptotic cells display their 

characteristic features. Therefore, different methods can produce different results 

according to the time of the apoptotic process. For example, in early phases of 

apoptosis, terminal deoxynucleotidyl transferase can be positive for DNA breaks 

and cell membrane can display Annexin-V positive phosphatidylserine. (73) 

However, morphological observation can be negative for apoptotic bodies and 

flow cytometric analysis can be negative for the sub-G1 peak, as DNA fragments 

are still maintained in the nucleus. Correspondingly, the DNA ladder cannot be 

detected by agarose gel electrophoresis. Still, when used properly, the propidium 

iodine (PI) flow cytometric assay is a rapid and easily reproducible method that 

can be adjusted for assessment of apoptosis in various cell types. (74) 

Lysed mitotic cells, micronuclei and chromosome aggregates can be 

mistakenly recognized as apoptotic cells, especiallly when using hypotonic 

propodium iodine solution (quick method). A better exclusion of objects/events 

with minimal DNA content is obtained if using a linear rather than logarithmic 

scale in the PI emission histogram. (74) If cell debris still strongly influences 

the percentage of hypodiploid nuclei, evaluate the samples by fluorescence 

microscopy, and in case of extensive cell lysis, use an alternative method. Flow 

cytometric analysis that cannot indicate a hypodiploid peak despite the presence 

of apoptosis as demonstrated by other methods (morphological observation 

and/or Annexin-V positivity) can be related to absent or very low DNA loss 

from apoptotic nuclei because of the presence of large DNA fragments. In this 

situation, use a specific extraction procedure as shown above. (75) 
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