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1.1  Historical Background 

It is a well-known fact that the income distributions are commonly unimodal 

and skew with a heavy right tail. Therefore, different skew models such as the 

lognormal and the Pareto have been proposed as suitable descriptions of the 

income distribution, but they are usually applied in specific empirical situations. 

For general studies, more wide-ranging tools have been considered. The most 

commonly used theory is based on the Lorenz curve. Lorenz (1905) developed 

it in order to analyse the distribution of income and wealth within populations. 

He described the Lorenz curve in the following way: 

"Plot along one axis accumulated per cents of the population from 

poorest to richest, and along the other, wealth held by these per cents of 

the population". 

Consequently, the Lorenz curve )( pL  is defined as a function of the 

proportion p of the population. It is convex and satisfies the condition ppL )(  

because the income share of the poor is less than their proportion of the 

population. A sketch of a Lorenz curve is given in Figure 1.1.1. 

The theoretical Lorenz curve )( pLX  for the income distribution )(xFX  of a 

non-negative variable X can be described in the following way: Let )(xf X  be 

the corresponding frequency distribution, 

 




0

)( dxxfx XX  （1.1.1） 

be the mean of X and let px  be the p quantile, that is pxF pX )( . Then  



4         Mathematical Analysis of Distribution and Redistribution of Income 
 

http://www.sciencepublishinggroup.com 

 

px

X

X

X dxxxfpL

0

)(
1

)(


, (1.1.2) 

is the Lorenz curve. The Lorenz curve is not defined if the mean is zero or 

infinite.  

 

Figure 1.1.1  A sketch of a Lorenz curve )( pLX . 

Consider a transformed variable )(XgY  , where )(g  is positive and 

monotone increasing. Define the inverse transformation )(YX  . Then 

)()())()(()()( xFxXPxgXgPyYPyF XY  . 

For the transformed variable Y the p quantile is pyF pY )( , that is 

)( pp xgy  .  

Now  

 dy

d
xf

dy

dx
xf

dy

dx

dx

xdF
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Hence  

 




00

)()()( dxxfxgdyyyf XYY  (1.1.4) 

and  

 

px

X

Y

Y dxxfxgpL

0

)()(
1

)(


. (1.1.5) 

If the transformation is linear xxg )( , then XY  , XY   , 

 )()(
1

)(

0

pLdxxfxpL X

x

X

X

Y

p

 
 (1.1.6) 

and consequently, the Lorenz curve is invariant under linear transformations.  

A simple example of this property is that the Lorenz curve of the income 

distribution is independent of the currency used. 

Consequently, the Lorenz curve satisfies the general rules: 

To every distribution )( xF  corresponds a unique Lorenz curve, ( )
X

L p . 

The contrary does not hold because every Lorenz curve )( pLX  is a 

common curve for a whole class of distributions )( xF   where   is an 

arbitrary positive constant.  

A Lorenz curve always starts at  0,0  and ends at  1,1 . The higher Lorenz 

curve the lesser is the inequality of the income distribution. The diagonal 

ppL )(  is commonly interpreted as the Lorenz curve for complete equality 

between the income receivers, but according to Wang et al. (2011), ppL )(  is 

strictly speaking not a Lorenz curve associated with complete inequality. They 
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discuss the possibility how to identify this Lorenz curve with the situation that 

all individuals receive the same income. Mathematically this result can be 

obtained as a limiting curve when the inequality of the income distribution 

converges towards zero. Increasing inequality lowers the Lorenz curve and 

theoretically, it can converge towards the lower right corner of the square. 

Consider two variables X and Y, their distributions )(xFX  and )(yFy , and 

their Lorenz curves )( pLX  and )( pLY . If )()( pLpL YX   for all p, then 

measured by the Lorenz curves, the distribution )x(F
X  has lower inequality 

than the distribution )(yFy  and )(xFX  is said to Lorenz dominate )(yFy . We 

denote this relation )()( yFxF Y
L

X  . An example of Lorenz dominance is given 

in Figure 1.1.2. This is the common definition of the Lorenz dominance 

although that some define the dominance in the opposite way. 

 

Figure 1.1.2  Lorenz curves with Lorenz ordering, that is (p)L(p)L Y
L

X  . 
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Income inequalities can be of different type and the corresponding Lorenz 

curves may intersect and for these no Lorenz ordering can be identified (c.f. 

Figure 1.1.3). The Lorenz curve )(2 pL  corresponds to a population where the 

poor are relatively not so poor and the rich are relatively rich. On the other hand 

the Lorenz curve )(1 pL  corresponds to a population with very poor among the 

poor and the rich are not so rich. 

For intersecting Lorenz curves alternative inequality measures have to be 

defined. The most frequently used is the Gini coefficient, G (Gini, 1914). Using 

the Lorenz curves, this coefficient is the ratio between the area between the 

diagonal and the Lorenz curve and the whole area under the diagonal. The 

formula is 

 

1

0

)(21 dppLG . (1.1.7) 

This definition yields Gini coefficients satisfying the inequalities 10 G . 

The higher G value the stronger inequality. If YX GG  , then the distribution 

)(xFX , measured by the Gini coefficient, has lower inequality than the 

distribution )(yFy  and we say that )(xFX  Gini dominates )(yFy . We denote 

this relation )()( yFxF Y
G

X  . 

Yitzhaki (1983) proposed the generalized Gini coefficient 

 


1

0

2 )()1()1(1)( dppLpG  , (1.1.8) 

where 1 . Different s   are used in order to identify different inequality 

properties. For low s   greater weights are associated with the rich and for high 
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s   greater weights are associated with the poor. Using the mean income (  ) 

and the Gini coefficient ( G ), Sen (1973) proposed a welfare index  

  GW  1 . (1.1.9) 

 

Figure 1.1.3  Two intersecting Lorenz curves. Using the Gini coefficient presented  

in the text, )(1 pL  has less inequality ( 3333.01 G ) than )(2 pL  ( 3600.02 G ). The 

Pietra coefficients, presented below, are 2500.01 P  and 2940.02 P . 

Alternative inequality measures have been defined and such measures are 

discussed later in section 1.3. 

1.2  Income Distributions 

According to Aichison and Brown (1954) general description of an income 

distribution may be defined as a rule which gives for each value of income x the 

proportion )(xF  of persons in a given population who have an income not 

greater than x. Such a description is a useful analytical tool if it requires that 

)(xF  has to be given a precise mathematical expression involving known, or 

more frequently unknown, parameters. It is interesting to recall that Pareto 

(1897), when he first presented his law, emphasised its empirical basis, but on 
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the other hand the process of reasoning by Gibrat (1931) started from theory to 

observations. 

Aichison and Brown (1954) gave four criteria on which the success of a 

particular description may be assessed. 

 How closely the description approximate to the observed distribution of 

incomes when specific values are assigned to the parameters? These 

values will usually be estimated from the data. 

 To what extent may the statistical description be shown to rest on 

assumptions which are consistent with our knowledge of the way in which 

incomes are generated? 

 What facilities does the description provide in the statistical analysis of 

the data? 

 What economic meaning or significance can be attached to the parameters 

of the description? 

Furthermore, Aichison and Brown gave a thorough presentation of studies of 

income distributions presented during the first half of the 20
th
 century. They 

stated that it is well known that income distributions almost invariably possess a 

single mode and are positively skewed. Many statistical descriptions satisfying 

these rather general conditions have been proposed in the past as applicable to 

the distribution of incomes, among which one may note the frequency curves of 

Pareto (1897), Kapteyn (1903), Gibrat (1931) and Champernowne (1953). 

Already Quensel (1944) stated that the lognormal curve agrees fairly well 

with the actual distribution of the lower incomes, although the Pareto curve 

often provides a more adequate description of the higher incomes. 
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Champernowne (1953) described an ingenious model which under realistic 

assumptions generates exactly or approximately a distribution of incomes 

obeying Pareto ś law. Champernowne ś model provides a basis for the compari-

son of processes of generating the Pareto and the lognormal descriptions of 

income distributions. Before Champernowne ś article Rhodes (1944) and 

Castellani (1950) presented attempts to derive Pareto ś distribution. 

Furthermore, Aichison and Brown (1954) noted that the law of proportionate 

effect, postulated by models predicting lognormality, is less appropriate when 

we are considering a heterogeneous group of income receivers than if the 

population is divided in sectors, within each the postulate applies. Under the 

assumptions which are necessary for the application of the central limit theorem, 

the multiplicative form of the central limit theorem leads us to expect that the 

distribution of incomes will eventually be described by a lognormal curve. If the 

population is divided into a large number of sectors and that in each sector the 

basic postulate of proportionate effect may be assumed to apply, means that a 

lognormal description of incomes will be valid in each sector, though the 

parameters of the description may take on different numerical values in each 

sector. 

Finally, Aichison and Brown (1954) stressed that it is useless to posit a 

statistical description of income distribution unless it is possible with the help of 

this description to derive analytical tools for any investigation that is likely to be 

required. To take an extreme example, there would be little point in giving 

)(xF  an explicit mathematical form involving unknown parameters if no 

method of estimating these parameters from data were available. It is, however, 

comforting in statistical work to be sure that one is not wasting any of the 

information available and this is always possible with the lognormal description. 
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An example of a skewed lognormal distribution can be seen in Figure 1.2.1. 

Note that the income receivers in this example are a homogeneous group from 

the upper part of the hierarchy (c.f. Aichison and Brown, 1954). 

 

Figure 1.2.1  Distribution of the income among 4103 industrial managers  

compared to a lognormal distribution (Cramér, 1949). 

McDonald and Ransom (1979) compared alternative income distribution 

models and applied them on US family income data. The interesting models 

were the lognormal, the gamma, the beta and the Sing-Maddala functions. They 

applied the models on family income for 1960 and 1969 through 1975 and 

compared the estimation methods: the method of scoring, the Pearson minimum 

chi-squared method and the least squares estimation. The estimation of the 

mean income and the Gini coefficient were directly obtained by substituting 

estimates of the parameters characterizing the associated distribution functions 

into the appropriate theoretical expressions of the coefficients. They noted that 

even though they observed situations in which parameter estimates change 

significantly from one time period to another, the associated population 

characteristics such as the mean and the Gini coefficients are much more stable. 

However, the estimated Gini coefficients associated with the scoring and the 

minimum chi-squared estimates of the lognormal density are much larger than 

for any other case considered. A general observation was that the scoring and 
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the minimum chi-squared results were very similar for the three parameter 

functions, with greater differences for the gamma, and still greater for the 

lognormal. 

Summing up, McDonald and Ransom concluded that the gamma provided a 

better fit than the lognormal, regardless of the estimation technique used. The 

three parameter functions (beta and Singh-Maddala) provided a better fit to the 

data than did the gamma density function. This finding is obviously due to the 

number of distribution parameters. 

Over time has come the realization that only the upper tail of the distribution 

is Pareto in form. Proceeding from the observation that the distribution has a 

Pareto tail for the top 15-20% of employees. Lydall (1968) advances a model of 

hierarchal earnings based on the notation that large organisations are organised 

on hierarchical principle. 

Harrison (1981) noted that a number of observed earnings distributions were 

well described by the Pareto distribution 

 









 11

10
)(

yy

y
yF

 , (1.2.1) 

where 0  and LYYy / , LY  being the minimum income. For 1 , the 

mean is 
1

)(






YE . Furthermore, the Lorenz curve is   

 1

11)(


 ppL  and 

the Gini coefficient is 
12

1





G . It may perhaps be convenient to remark here 

that for commonly occurring values of the parameter   a second moment of the 

Pareto distribution does not exist unless 2 . Furthermore, Harrison stressed 

that equally compelling reasons supporting the use of disaggregated data can be 

found in the case of the lognormal function. 
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Dagum (1977, 1980, 1987) has paid continuous attention to alternative 

income distributions. 

A common technique for estimating the Pareto constant,  , is to linearize the 

survival function by taking logarithms, and apply ordinary least squares. The 

survival function is  













LY

Y
yFyS )(1)( . 

After taking natural logarithms one obtains the linear model 

  )Yln(C)Yln()Yln()y(Sln
L

  . 

This model indicates a linear, decreasing association between  ln ( )S y  and 

)ln(Y . A regression analysis gives an estimate of   and the coefficient of 

determination, 
2R , measures the linearity in the model and the goodness of fit 

of the Pareto model. 

We apply this analysis on annual taxable incomes in Finland for 2009 

(http://pxweb2.stat.fi/Database/StatFin/tul/tvt/2009/2009_en.asp). 

The data are presented in a grouped table (Table 1.2.1). We assume that the 

Pareto model may start from ca. 25000Y €. For values equal to or greater 

than that we obtain the estimate 637.2ˆ   and in addition, the coefficient of 

determination is 99241.02 R . For the income distribution for incomes greater 

than 25000 the Gini coefficient is 234.0
12

1






G . 

 

 

http://pxweb2.stat.fi/Database/StatFin/tul/tvt/2009/2009_en.asp
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Table 1.2.1  Taxable income receivers in Finland 2009. 

Classes of annual income (€) Number of income recipients 

- 1000 182281 

1000 - 2000 96836 

2000 - 3000 80056 

3000 - 4000 65800 

4000 - 5000 59595 

5000 - 6000 62171 

6000 - 7000 107558 

7000 - 8000 146526 

8000 - 9000 114602 

9000 - 10000 121555 

10000 - 12500 319042 

12500 - 15000 329083 

15000 - 17500 259979 

17500 - 20000 243284 

20000 - 25000 481753 

25000 - 30000 487376 

30000 - 35000 385672 

35000 - 40000 266075 

40000 - 50000 307810 

50000 - 60000 152714 

60000 - 80000 120327 

80000 - 88488 

All 4478583 
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In Figure 1.2.2 we sketch the result. 

 

Figure 1.2.2  Graphical sketch of the distribution of taxable income in Finland  

(2009) and a Pareto model for annual incomes greater than 25000Y €. 

1.3  Lorenz Curves and Concentration of Incomes 

A central topic in the analyses of income distributions is the concept of 

concentration of incomes, which is defined in the literature (Lorenz, 1905) in 

such a way as to be free of any particular hypothesis concerning the genesis of 

the description of the income distribution. 

In Section 1.1 we introduced the Lorenz curve )( pL  defined by 


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dxxfxpL
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, where 




0

)( dxxfx XX  is the mean and pxF p )( . 

Lorenz curves were presented in the Figures 1.1.1, 1.1.2 and 1.1.3. 

The Lorenz curve has the following general properties: 

i. )( pL  is monotone increasing. 
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iii. )( pL  is convex. 

iv. 0)0( L  and 1)1( L . 

The Lorenz curve )( pL  is convex because the income share of the poor is 

less than their proportion of the population. The higher Lorenz curve the lesser 

inequality in the income distribution (c.f. Section 1.1).  

The Lorenz curve for a probability distribution is a continuous function. 

However, Lorenz curves representing discontinuous functions can be 

constructed as the limit of Lorenz curves of probability distributions, the line of 

perfect inequality being an example. 

If the Lorenz curve is differentiable the derivatives have the following 

properties. Let 

px

X

X

X dxxfxpL

0

)(
1

)(


, pxF pX )(  and the density function 

)(xf X . When we differentiate the equation pxF pX )(  we obtain 

1
)()(


dp

dx

dx

xdF

dp

xdF p

p

pXpX
,  

1)( 
dp

dx
xf

p

pX  

and  

)(

1

pX

p

xfdp

dx
 . 

The derivation of 

px

X

X

X dxxfxpL

0

)(
1

)(


 yields 

http://en.wikipedia.org/wiki/Continuous_function
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X

pp

pXp

X

p

p

x

X

X

X
x

dp

dx
xfx

dp

dx

dx

dxxfxd

dp

pdL

p





)(

1
)(

1)( 0
 

and consequently,  

 
X

pX
x

dp

pdL




)(
 (1.3.1) 

If the Lorenz curve is differentiable twice, then the second derivative is  

)(

111)(
2

2

pXX

p

X

X

xfdp

dx

dp

pLd


 . 

Hence, 

  pXX xfdp

pLd



1)(
2

2

  (1.3.2) 

The difference between the diagonal and the Lorenz curve 

)( pLpD X  

X

p

X

x
pL

dp

dD


 1)(1  

0
)(

11
)(

2

2


xfdp

dx
pL

dp

Dd

XX

p

X

X


. 

The maximum of D implies 01 
X

px


, that is px . 

For Xpx  , 1)( 
X

X
X pL




 and at the point )( XXFp    the tangent is 

parallel to the line of perfect equality. This is also the point at which the vertical 
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distance between the Lorenz curve and the egalitarian line attains its maximum 

( )
X

P p L p
 

  . This maximum is defined as the Pietra index (Lee, 1999). 

According to this definition 0 1P  . The lower bound is obtained when there 

is total income-equality that is the Lorenz curve coincides with the diagonal. 

The upper bound can be obtained when the Lorenz curve converges towards the 

lower right corner. The Pietra index can be interpreted as income of the rich that 

should be redistributed to the poor in order to obtain total income equality. 

Therefore, the index is sometimes named the Robin Hood index. Lee (1999) 

used the Lorenz curve and the summary measures based on it for diagnostic 

tests medical studies. He associated the Gini and the Pietra indices with the 

receiver operating characteristic curve (ROC). He also gave in his reference list 

additional papers where these summary statistics were applied.  

An alternative definition has also been given. The Pietra index can be defined 

as twice the area of the largest triangle inscribed in the area between the Lorenz 

curve and the diagonal line (Lee, 1999). In Figure 1.3.1 one observes that the 

triangle obtains its maximum when the corner lies on the Lorenz curve where 

the tangent is parallel to the diagonal. The height of the triangle is 
2

P
h   and 

the base is the diagonal 2b . The double of the area is 

P
Ph


22

2
2

2

2
2area2 . 

Compared to the Gini coefficient we obtain that PG   (see, Lee, 1999).  
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Figure 1.3.1  The Lorenz curve and the geometric interpretations of the Pietra index. 

The definition yields Pietra coefficients satisfying the inequality 10  P . If 

YX PP  , then the distribution )(xFX  measured by the Pietra index has lower 

inequality than the distribution )(yFy  and we say that )(xFX  Pietra dominates 

)(yFy . We denote this relation )()( yFxF Y
P

X  . For the Lorenz curves in Figure 

1.1.3, 0.25001 P  and 0.29402 P . According to the Pietra index, )(1 pL  is 

less unequal than )(2 pL . 

In general, the Pietra and the Gini orderings are not identical. The following 

simple example supports this statement. Consider the situation described in 

Figure 1.3.2. There are two polygonal Lorenz curves, OABC ( )(1 pL ) and ODC 

( )(2 pL ). 
1
For )(1 pL  we obtain 11 GP   and for )(2 pL  we obtain 22 GP   

because ODC is a triangle yielding identical indices. Furthermore if the point D 

                                                           
1 The Lorenz curves in this example are not continuously differentiable, but slight modifications yield 

differentiable Lorenz curves. One has only to modify the edges to mini curves. If these modifications are 
minute, the inequalities given above still hold. 
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is close to the line AB, we observe that 21 GG   and 21 PP  . Combining these 

inequalities we obtain 1221 GGPP  . Consequently, )(1 pL  Pietra 

dominates )(2 pL , but )(2 pL  Gini dominates )(1 pL . 

 

Figure 1.3.2  Comparisons between Gini and Pietra indices. For the Lorenz curve 

)(1 pL  the Pietra index is 20.0P  and the Gini coefficient is 30.0G  and for Lorenz 

curve )(2 pL  the Pietra index is 25.0P  and the Gini coefficient is 25.0P .  

Above we obtained the inequality 10  P . The limits in the inequalities can 

be obtained and this can be explained by the following example and Figure 

1.3.3. 

Consider the simplified RT model defined in (1.4.5) 

ppL )(  1 . 

Examples of these Lorenz curves are sketched in Figure 1.3.3. The Gini 

coefficient is 
1

1








G . When 1  then 0G  and when   then 

1G . The Pietra index is 
11
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values 
n

1
1 , for ...,2,1n . The P values are 






















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
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




nnn

nn
P

1
1

1

1
1

1

1
1 .  

When n , both terms converge towards 1e  and 0P . According to 

the definition of the P index  








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
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 11

1

11
 for all 1p  .  

For increasing   values the supremum of pp   is one. This must also be 

the supremum of 
11

1

11 





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







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











P . Consequently, the interval 10  P  

cannot be shortened.  

 

Figure 1.3.3  Sketches of extreme Lorenz curves with corresponding P indices.  

For the Lorenz curve 25.1k  the Pietra index is 0.0819 and for the Lorenz  

curve 10k  the index is 0.6966. 
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We can prove (
1

lim
p

 denotes limit from the left). 

Theorem 1.3.1. If X exists, then 
1

lim ( )(1 ) 0
p

L p p


   . 

Proof. Consider the integral 


x

X dttft )( . If X  exists, then XX dttft 


0

)(  

and for every 0  there exists an x  such that 




x

X dttft )(  if xx  . 

Choose p so that xxp
 , then 

 )1()()( pxdttfxdttft p

x

Xp

x

X

pp

 


 . (1.3.3) 

As a consequence of (1.3.3), 

0)1(lim
1

)1(lim)1)((lim
1

11





pxp
x

ppL
p

p

XX

p

p
X

p  . 

Consider an one-parametric class of cumulative distribution functions 

),( xF , defined on the positive x-axis. If we assume that )(),( xFxF   , i.e. 

it depends only on the product x , then the following theorem holds: 

Theorem 1.3.2. Let ),( xF  be a one-parametric class of distributions with 

the properties: 

i. )(),( xFxF   . 

ii. )( xF   is defined on the positive x-axis. 

iii. )( xF   and its derivative are continuous. 

iv. )(XEX  exists. 
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Let XT  , then  

 


p

p

t
x )(  (1.3.3) 

and  

 


c
X )( , (1.3.5) 

where pt  and c are independent of  . 

Proof. Let   be an arbitrary, positive parameter. Then the quantile )(px  is 

defined by the equation pxF p )( . If we define pt by the equation 

ptF p )(  then pt  does not depend on   and pp tx )(
 
and (1.3.3) is 

proved. The formula (1.3.5) and the statement that 

)(

0

)(
)(

1
)(






px

xdFxpL  is 

independent of   is proved by using the substitution xt   in the integrals 






0

)()( xdFxXE   and 

)(

0

)(
)(

1
)(






px

xdFxpL . 

Furthermore, we can prove: 

Theorem 1.3.3. Consider a function )( pL  defined on the interval [0, 1] with 

the properties: 

i. )( pL  is monotone increasing and convex. 

ii. 0)0( L  and 1)1( L . 

iii. )( pL  is differentiable twice. 
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iv. 0)1)((lim
1




ppL
p

. 

then )( pL  is a Lorenz curve of a distribution with finite mean.  

Proof. If we denote the unknown distribution )(xF  and its derivative )(xf , 

then necessarily 


px
pL  )( . The derivative )( pL  is a monotone-increasing 

function. If its inverse is denoted )( pM , we get the necessary relation 

)()(


p

p

x
MpxF  . 

If 



1

 , then )()( xMxF  . Now we shall prove the sufficiency, that is, 

that )( xM   is a distribution, whose mean is 



1

  and whose Lorenz curve is 

)( pL . We denote )()( xFxM   then )()()( xMxFxf   . After 

observing that the property (iv) indicates that )( pL  is integrable from 0 to 1, 

we introduce the variable transformation 

)( xMy   

dxxMdy )(   

)(
1

yLx 
  

We obtain 




1
)(lim

1
)(

1
lim)(lim

0
1

0
1

0

  
dyyLdyyLdxxMx

p

p

p

p

t

t
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The given function )( pL  has a monotone-increasing inverse function, 

)( xM   giving a corresponding distribution function )()( xMxF   whose 

mean is  .  

Using the same transformation we obtain that the Lorenz curve )(
~

pL  of 

)()( xMxF   is 

dvvLdvvLdxxMxpL

ppx p

 

000

)()()()(
~

  

and the theorem is proved. 

These results have been collected in the following theorem (Fellman, 1976, 

1980). 

Theorem 1.3.4. Consider a given function )p(L  with the properties: 

i. )( pL  is monotone increasing and convex to the p-axis. 

ii. 0)0( L  and 1)1( L . 

iii. )( pL  is differentiable. 

iv. 0)1)((lim
1




ppL
p

. 

Then )( pL  is the Lorenz curve of a whole class of distribution functions 

)( xF  , where   is an arbitrary positive constant and the function )(F  is the 

inverse function to )( pL . 

In Fellman (1976) the result was presented and later Fellman (1980) 

presented the following theorem. 

Theorem 1.3.5. A class of continuous distributions ),( xF  with finite mean 

has a common Lorenz curve if and only if )(),( xFxF   . 
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The formula for Gini coefficient G is given in (1.1.7) and G satisfies the 

inequality 10 G . The higher G value the stronger inequality in the income 

distribution. Later, alternative inequality indices have been defined and 

introduced. The generalized Gini coefficient 


1

0

2 )()1()1(1)( dppLpG  , 

where 1 , is given in (1.1.3) and has been proposed by Yitzhaki (1983) in 

order to identify different distribution properties. The welfare index 

 1W G  , given in (1.1.8) and proposed by Sen (1973) is based on the 

mean income (  ) and the Gini coefficient ( G ). 

Kleiber and Kotz (2001, 2002) have outlined how the income distributions 

can be characterised by their Lorenz curves:  

1.4  Modelling Lorenz Curves 

As an alternative to income distributions some scientists have built models 

for the Lorenz curve. Among these we may list the following studies: Kakwani 

& Podder (1973, 1976), Kakwani (1980), Rasche et al. (1980), Gupta (1984), 

Rao & Tam (1987), Chotikabanich (1993), Ogwang & Rao (2000), Cheong 

(2002), Rohde (2009) and Fellman (2012). The theoretical step from Lorenz 

curve to distribution function is more difficult than that from distribution 

function to Lorenz curve. Fellman (2012) noted that there is a difference 

between advanced and simple Lorenz models. Advanced Lorenz models yield a 

better fit to data, but are difficult to exactly connect to income distributions. 

Simple one-parameter models can more easily be associated with the 

corresponding income distribution, but when statistical analyses are performed 

the goodness of fit is often poor. 
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Rao and Tam (1987) compared five different models. The first was the three-

parameter Kakwani & Podder (KP) model (1973), 

  
10

,102

0







c

ba

a

cb   (1.4.1) 

where 
2

pL 
  and 

2

pL 
 . 

The second is the two-parameter generalised Pareto model (GP) analysed by 

Rasche et al. (1980) 

   ,
10

10
)1(1

1






b

a
pL ba

GP  (1.4.2) 

and the third is the one-parameter Gupta (G) model (1984)  

 1,1    p
G pL . (1.4.3) 

In addition, Rao and Tam constructed a generalized two-parameter Gupta 

model (RT) 

 1,,1    apL pa
RT . (1.4.4) 

Finally, they introduced a simplified one-parameter version (S) of the RT 

model ( 1 ) 

 1 a
S pL  (1.4.5) 

Chotikabanich (1993) defined an alternative one-parameter Lorenz curve (C):  

 0
1

1
)( 




 k

e

e
pL

k

kp

C
. (1.4.6) 
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The models G, S and C contain only one parameter. They are so simple that it 

is impossible to distinguish between the estimated length of the range for the 

income distribution function and the Gini coefficient. If one of these properties 

is estimated the other is fixed. Therefore, Fellman (2012) paid these models 

special attention and analysed them in more detail. 

In general, the step from the Lorenz curve to the income distribution starts 

from the formula 

 

p
x

)p(L  , (1.4.7) 

where 
p

x  is the p-percentile and µ is the mean of the corresponding distribution 

)x(F . We define )(M   as the inverse function of  L . From (1.4.7) we obtain  

 











p
x

Mp .  (1.4.8) 

Equation (1.4.8) indicates that )(M   is the income distribution function 

corresponding to the given Lorenz curve, that is, 











x
MxF )( . This 

connection between the Lorenz curve and the distribution function is easily 

defined, but for most of the exact Lorenz curves it is difficult or even 

impossible to obtain the income distribution mathematically. 

The Gupta model. Examples of Lorenz curves for the Gupta model (1.4.3) 

are given in Figure 1.4.3.  

Following Gupta, we observe that 

 



p1p1p

G

x
logp)p(L  

. (1.4.9) 
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Consequently, 

 



 

 
G

p
p

p
Lx

00
limlim  (1.4.10) 

and 

 
)log1(limlim

11
 

 
G

p
p

p
Lx

  (1.4.11) 

From this it follows that Gupta ś model corresponds to distributions defined 

on a finite interval  )log1(,1   . In spite of the fact that the Gupta 

model is relatively simple, the corresponding income distribution is not 

attainable. The equation (1.4.9) cannot be solved exactly with respect to 

variable p because the variable p can be found both as a factor and in the 

exponent.  

 

Figure 1.4.3  The Lorenz curves for the Gupta model for various β  

values (Fellman, 2012). 
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For the Gupta model, the Gini coefficient is  

 






 
 










log

1
1

log

2
121

1

0

1dppG p
G .  (1.4.12) 

Figure 1.4.3 shows that the Gini coefficient tends towards 1 when  .
2
  

Following Gupta, the variable log  can be estimated by using the logarithm 

of the model in (1.4.4), that is, from the equation )log()1(log 







p

p

L
.  

The generalized Gupta model (RT). For the generalized Gupta model, we 

obtain. 

  111 log)(   pp
G

p
pppL

x





. (1.4.13) 

The income distribution is defined on the interval  0, ( log )   . It can be 

observed that if   the range of the income distribution then tends towards 

 ,0  for both the Gupta and the generalized Gupta models.  

Following Gradsheteyn and Ryshnik (1965), Rao and Tam give for the 

generalised Gupta model the Gini coefficient 

  



log;2;121 11
)1(

log

 


FeGRT

, (1.4.14) 

where 
11

F  denotes the confluent hyper-geometric function with the parameters 

indicated in the parentheses.  

                                                           
2In Rao and Tam (1987), the formula for the Gini coefficient based on the Gupta model contains a misprint, 

but a numerical check of the Rao and Tam results indicates that the authors have used the correct formula in 
their calculations.  
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The simplified RT model (S). The simplified RT model is obtained for 

1  and is given in (1.4.5). The Lorenz curves for various   values are 

given in Figure 1.4.4. 

 

Figure 1.4.4  Rao-Tam simplified Lorenz curves (Fellman, 2012). 

The Gini coefficient is 
1

1
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
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Hence, the income distribution is 
1

1

x
)x(F


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


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







 defined on the interval 

 ,0 . Income distributions are given in Figure 1.4.5 for various α values. 
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Figure 1.4.5  Income distributions corresponding to the Rao-Tam simplified  

Lorenz curve (Fellman, 2012). 

The Chotikabanich model. Chotikabanich (1993) introduced an alternative 

one-parameter Lorenz curve (cf. 1.4.6)  

0
1

1
)( 




 k

e

e
pL

k

kp

C . 

It is easily found that  

0)0(L
C

 , 1)1(L
C

 , 0
1e

ke

dp

)p(dL
k

kp

C 


  

and  

0
1e

ek

dp

)p(Ld
k

kp2

2

C

2




 . 

 

0 

0.2 

0.4 

0.6 

0.8 

1 

0 1 2 3 4 5 

- Income distributions for the simplified Rao Tam model 

?=1.5 

?=2 

?=3 

?=4 

?=5 



Chapter 1  Introduction          33 
 

http://www.sciencepublishinggroup.com 

The second derivative is positive and hence the Lorenz curve is convex. 

Consequently, the first derivative is increasing from the minimum 

0
1e

k

dp

)0(dL
k

C 


  to 
1e

ke

dp

)1(dL
k

k

C


 .  

If we consider an income distribution with the mean  , then income is 

distributed over the interval (
1e

k
k 


,

1e

ke
k

k




). When k , this interval 

converges towards (0 , ) 

Lorenz curves as functions of parameter k are given in Figure 1.4.6. 

 

Figure 1.4.6  Lorenz curves for the Chotikabanich models (c.f. Fellman, 2012). 
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The Gini coefficient increases toward 1 when k  . 

If we assume an arbitrary  , then 
1e
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 and we get 

pk

kp

x
1e
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
. Hence, 
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
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

 
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k

)1e(x
log

k

1
)x(F

k


 and the theoretical income 

distribution is obtained.  

Figure 1.4.7 presents income distributions for various k values. 

  

Figure 1.4.7  Income distributions for the Chotikabanich models (Fellman, 2012). 
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Kakwani and Podder (1976) applied their Lorenz model to Australian data, 

comparing four alternatives, of which all resulted in accurate estimates. The 

estimates varied between 0.3195 and 0.3208 when the actual value was 0.3196. 

Rao and Tam (1987) applied the Kakwani-Podder, the generalised Pareto, the 

RT, the Gupta and the simplified RT models to the same data. Their comparison 

of the models indicates that the Kakwani-Podder, the generalised Pareto and the 

RT model yielded the best estimates. The G and the S models resulted in 

estimates with the largest errors. For the Gupta model, the estimate was too high 

(0.3691) and for the simplified RT model it was too low (0.2508). The 

magnitudes of these errors were comparable. These findings support the 

criticism of the estimation based on simple one-parameter Lorenz models.  

Fellman (2012) applied the Chotikabanich model and obtained the following 

results. He considered  
2

obs
k

)k(ffmin   and estimated the parameter k and 

performed the minimization by using Lf   and )Llog(f  . Fellman fitted the 

model to the Kakwani & Podder data obtained, 2095.0k   and 0.3262G  , and 

2097.0k   and 0.3263G  , respectively. He observed that the one-parameter 

Chotikabanich model yields slightly better but still less exact results. As a 

comparison, he presented Lorenz models fitted to the Australian data 

graphically in his Figure 6, which we reprint in Figure 1.4.8. One observes that 

the Chotikabanich model is closest to the empirical curve. The simplified RT 

and the Gupta models show larger but comparable discrepancies. These findings 

support the results obtained by Rao and Tam. In Figure 1.4.8, we also observe 

that Gupta model yields too high an estimate of G and the simplified model too 

low an estimate. 
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Figure 1.4.8  Graphical presentation of the goodness of fit obtained by the Gupta,  

RT and Chotikabanich models. Note that the Chotikabanich gives the best fit  

(Fellman, 2012). 

Fellman (2012) studied the numerical estimation of the Gini coefficient based 

on Lorenz curves and this is discussed more in detail in Section 2.4. The methods 

were the trapezium rule, Simpson ś rule, a modified version of Golden ś method 

(2008) and the Lagrange method. In Fellman (2012) the Simpson rule could not 

be performed because it demands equidistant points. In general, the trapezium 

rule yields Gini coefficients which are too low. For the Australian data, the 

trapezium rule yielded the result 0.3134, which is slightly below the correct value. 

Since the Lagrange method demands an even number of sub-intervals, Fellman 

(2012) had to modify the method slightly. He applied the Lagrange method for 

the ten last sub-intervals and added a small (triangular) correction from the first 

sub-interval. The estimate obtained was 0.3199, a result which is closest to the 

correct value. Fellman (2012) presented a modified version of Golden ś method. 

When he applied this method to the Australian data, he obtained the estimate of 

0.3075. This is too low, but still greater than the extremely low value obtained by 

the simplified RT model. Summing up, one has to choose the Lorenz model with 

due consideration. This is especially important if the selection should be 

performed among simple one-parameter models. 
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