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Redistributions of income according to tax or transfer policies can be 

considered as variable transformations of the initial income. The transformation 

is usually assumed to be positive, monotone-increasing and continuous. Re-

cently, Fellman (2009, 2011) has also discussed discontinuous transformations. 

If the transformation is considered as a tax or a transfer policy, the transformed 

variable is either the post-tax or the post-transfer income. A central problem in 

the literature has been the Lorenz dominance, defined above, between the initial 

and the transformed income (c.f. Fellman, 1976; Jakobsson, 1976; Kakwani, 

1977) (see also Theorem 2.1.1 below). Under the assumption that the theorems 

should hold for all income distributions, the conditions are both necessary and 

sufficient (Jakobsson, 1976; Fellman, 2009).  

2.1  Income Redistributions 

Variable transformations are valuable when one studies the effect of tax and 

transfer policies on the income inequality. If the transformation should result in 

an increasing transformed variable with finite mean then discontinuities can 

only consist of finite positive jumps and the number of jumps has to be finite or 

countable. In this study we reconsider the effect of variable transformations on 

the redistribution of income (Fellman, 1976, Jakobsson, 1976, Kakwani, 1977 

and Hemming & Keen, 1983). The continuity of the transformations can be 

implicitly included in the necessary and sufficient conditions. One main result is 

that continuity is a necessary condition if one pursues that the income inequality 

should remain or be reduced.  

Consider the income X with the distribution function )x(
X

F , the mean 
X

 , 

and the Lorenz curve )p(L
X

. We assume that X is defined for 0x  . If we 

assume that the density function )x(f
X

 exists, we follow Section 1.1 and 

obtain the formulae 
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 



0

XX
dx)x(fx  (2.1.1) 

and 

 

px

0

X

X

X
dx)x(fx

1
)p(L


.  (2.1.2) 

We consider the transformation )X(uY  , where )(u   is non-negative and 

monotone increasing. The transformation can be considered as a tax or a 

transfer policy and consequently, the transformed variable is the post-tax or 

post-transfer income, respectively.  

For the transformed variable Y we obtain the distribution function 

          yuFyuXPyXuPyYPyF XY
11)()(    (2.1.3) 

Using this result we obtain the mean and the Lorenz curve for the variable Y.  

 
1

0

XY
dx)x(f)x(u   (2.1.4) 

and 

 

px

0

X

Y

Y
dx)x(f)x(u

1
)p(L


. (2.1.5) 

The fundamental theorem is: 

Theorem 2.1.1. (Fellman, 1976, Jakobsson, 1976 and Kakwani, 1977). Let X 

be an arbitrary non-negative, random variable with the distribution )x(F
X

, 

mean 
X

  and Lorenz curve )p(L
X

. Let )x(u  be non-negative, continuous and 

monotone-increasing and let  )X(uE
Y
  exist. Then the Lorenz curve 

)p(L
Y

 of )X(uY   exists and the following results hold: 
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(i) )p(L)p(L
XY

  if 
x

)x(u
 is monotone decreasing. 

(ii) )p(L)p(L
XY

  if 
x

)x(u
 is constant and 

(iii) )p(L)p(L
XY

  if 
x

)x(u
 is monotone increasing. 

According to this theorem we obtain in (i) a sufficient condition that the 

transformation )x(u  generates a new income distribution which Lorenz 

dominates the initial one. If we analyse the proof of the case (i) in Fellman 

(1976, Theorem 1) we observe that the difference )p(L)p(L
XY

  can be 

written 

  









px

0

X

XY

XY
dx)x(f

x)x(u
)p(L)p(L)p(D


 (2.1.6) 

where )p(Fx 1

Xp

 . In any case, 0)1(D)0(D  . In order to obtain Lorenz 

dominance the difference )p(D  must start from zero and then attain positive 

values and after that decrease back to zero and the integrand in (2.1.6) must start 

from positive (non-negative) values and then change its sign and become 

negative. Consequently, 
x

)x(u
 has to be a decreasing function.  

The condition is necessary if the rule should hold for all income distributions 

)x(F
X

 (Jakobsson, 1976). Otherwise we can find a transformation )x(u  for 

which the quotient 
x

)x(u
 is not monotone decreasing for all 0x  , and a 

distribution )x(F
X

 such that the result in the proof holds, i.e. dominance is 
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obtained. Assume that the quotient 
x

)x(u
 is both increasing and decreasing.

3
 

Let a transformation )x(u  satisfy the initial conditions (non-negative, 

continuous and monotone increasing) and let 
x

)x(u
 be increasing within some 

interval (  bxa0 ). Now we present a distribution such that the 

transformed variable )X(uY   does not Lorenz dominate the initial variable X. 

Consider a distribution with a continuous density function, 

 

















bx0

bxa0)x(f

ax00

)x(f
0X

 (2.1.7) 

For the pair ( )x(f
X

, )x(u ) the formula (2.1.6) can be written 

 dx)x(f
x

)x(ux
)p(D

X

x

a X

Y

Y

p

 













, (2.1.8) 

where bxa
p
 .  

We observe that 0)1(D)0(D  , that Theorem 1(iii) holds and that the 

transformation results in a new variable Y which is Lorenz dominated by the 

initial variable X. Hence, if we demand that the transformed variable )X(uY   

shall Lorenz dominate X for all distributions )x(F
X

, then the condition in 

Theorem 2.1.1 (i) is necessary (Jakobsson, 1976, Lambert, 2001; Chapter 8). 

                                                           

3If 
x

xu )(
 is monotonously increasing for all 0x  then the proposition (iii) holds and this case can be 

ignored. 
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Hemming and Keen (1983) gave a new condition for the Lorenz dominance. 

Their condition is, with our notations, that for a given distribution )x(F
X

 the 

function )x(u  crosses the line x
X

Y




 once from above, that is that 

x

)x(u
 

crosses the level 
X

Y




 once from above. We observe that if their condition holds 

then the integrand in (2.1.6) starts from positive values changes its sign once 

and ends up with negative values and their condition is equivalent with our 

condition. For the example considered above, the Hemming-Keen condition is 

not satisfied. The integrand is zero for ax   and for bx  . For bxa   the 

ratio 
x

)x(u
 is increasing and if it crosses 

x

Y




 it cannot do it from above. 

Consequently, if 
x

)x(u
 is not monotone decreasing then there are distributions 

for which the Hemming-Keen condition does not hold.  

On the other hand if we assume that 
x

)x(u
 is monotone decreasing then 

x

)x(u
 satisfies the condition ―crossing once from above for every distribution 

)x(F
X

‖. Hence, our condition and Hemming-Keen condition are also 

equivalent as necessary conditions.  

In a similar way we can prove that if the other results in Theorem 2.1.1 

should hold for every income distribution the conditions in (ii) and in (iii) are 

also necessary. 
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The results obtained, indicate that if 
x

)x(u
 is continuous and monotone 

increasing even in a short interval, then there are income distributions such that 

the transformation )x(u  cannot result in Lorenz dominance. What can be said 

if )x(u  is discontinuous? Assume that )(xu  is still positive and monotone 

increasing. Assume furthermore, that  
Y

)X(uE   exists for every stochastic 

variable X with finite mean 
X

 . Above we stressed that the discontinuities of 

)x(u  can only consist of finite positive jumps and the number of jumps can be 

assumed to be finite or countable. Assume that elsewhere )x(u  satisfies all the 

other conditions including the condition in Theorem 2.1.1(i). We will prove that 

if )x(u  is discontinuous there exists a distribution )x(F
X

 such that the 

transformation )X(uY   does not Lorenz dominate the initial variable X. 

Again we follow the arguments given by Jakobsson (1976). However, the 

discontinuity demands a more detailed reasoning. 

Let 0a   be a discontinuity point, such that 
0ax

u)x(ulim 


 and 

du)x(ulim
0ax



, where the jump 0d  . (The notation )x(ulim

ax 
 

indicates limit from the left and )x(ulim
ax 

 limit from the right.) We do not 

assume anything about how )x(u  is defined in the point a . The following 

analyses are based on Fellman (2009). Choose 0h   so small that the point a  

is the only discontinuity point within the interval  ha,ha  . (Later we may 

reduce the interval even more). Let t and z be arbitrary values satisfying the 

inequalities 

hazatha  . 

If )x(u  is monotone increasing we have )z(uduu)t(u
00

  and  
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





















z

)z(u
lim

a

du

a

u

t

)t(u
lim

az

00

at . 

Hence, the quotient 
x

)x(u
 cannot be monotone decreasing within the interval 

 ha,ha  . Consider a variable X, having the symmetric density function 

 


























hax0

haxhaxa
h

1
1

h

1

hax0

)x(f
X . (2.1.9) 

The mean aXE X  )( . For the transformed variable )(XuY   the mean 

is 

 

 )()(
2

1

)()()()(

)()()()()(

21

21







uu

dxxfudxxfu

dxxfxudxxfxuYE

ha

a

X

a

ha

X

ha

a

X

a

ha

XY


















, (2.1.10) 

where aha
1
   and haa

2
 .  

If 0h  then d
2

1
u

0Y
 . Assume furthermore, that we have chosen h so 

small that d
4

1
u

0Y
 . Consider now 

 












px

ha

X

X

Y

Y

XY
dx)x(f

x

)x(ux
)p(L)p(L)p(D






, (2.1.11) 
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where p)x(F
pX
 . In order to obtain Lorenz dominance the integrand must 

start from positive (non-negative) values and then change its sign and become 

negative in such a manner that the difference )p(D  starts from zero and then 

attains positive values and after that it decreases back to zero. Within the 

interval  ha,ha   the sign of the integrand depends on the factor 

X

Y

x

)x(u




 , which starts from the value 

)ha(a

)d
4

1
u(had

4

1

a

d
4

1
u

ha

u

aha

)ha(u 00
0Y















  . 

If we assume that h satisfies the earlier conditions and in addition, the 

condition 
du4

ad
h

0


 , the parenthesis in (2.1.11) starts from negative values 

and consequently, the whole integrand is negative and )p(D  starts from 

negative values. For the corresponding income distribution the transformed 

variable Y does not Lorenz dominate the initial variable X. Hence, the continuity 

of )x(u  is a necessary condition if we demand that the transformed variable 

should Lorenz dominate the initial variable for every distribution. From this it 

follows that if the condition in Theorem 2.1.1(i) has to be necessary it implies 

continuity and hence, an explicit statement of continuity can be dropped. If we 

study the condition in (ii) we observe that kx)x(u   and consequently, )x(u  

has to be continuous.  

However, in the case (iii) the discontinuity does not jeopardize the monotone 

increasing property of the quotient 
x

)x(u
 and the result in Theorem 2.1.1 (iii) 
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holds even if the function is discontinuous. Therefore, also in this case we can 

drop the explicit continuity assumption. 

Summing up, for arbitrary distributions, )x(F
X

, the conditions (i), (ii), and 

(iii) in Theorem 2.1.1 are both necessary and sufficient for the dominance 

relations and an additional assumption about the continuity of the 

transformation )x(u  can be dropped. We obtain the more general theorem 

(Jakobsson, 1976; Fellman, 2009). 

Theorem 2.1.2. Let X be an arbitrary non-negative, random variable with the 

distribution )x(F
X

, mean 
X

  and the Lorenz curve )p(L
X

, let )x(u  be a non-

negative, monotone increasing function and let )X(uY   and 
Y

)Y(E   exist. 

Then the Lorenz curve )p(L
Y

 of Y exists and the following results hold: 

(i) )p(L)p(L
XY

  if and only if 
x

)x(u
 is monotone-decreasing. 

(ii) )p(L)p(L
XY

  if and only if 
x

)x(u
 is constant. 

(iii) )p(L)p(L
XY

  if and only if 
x

)x(u
 is monotone-increasing. 

Remark. From the discussion above it follows that only in the case (iii) the 

transformation )(xu can be discontinuous. 

Now, we analyse the effect of a finite step in )x(u  on the Lorenz curve. We 

use the notations presented above.  

Let zat  , )t(Fr
X

 , )a(Fq
X

  and )z(Fs
X

 .  

Consider the difference 



52         Mathematical Analysis of Distribution and Redistribution of Income 
 

http://www.sciencepublishinggroup.com 

     

z

t

X
Y

XYXYY dxxfxutFLzFLL )(
1

)()(


 

    

z

a

X
Y

a

t

X
Y

dxxfxudxxfxu )(
1

)(
1


   qs

u
rq

u

YY








 )()( 11
 

where at
1
  and za

1
  . 

When  at  and  az , then 0rq  , 0qs   and 0L
Y
 . 

Hence, although the transformation )x(u  is discontinuous in the point a, the 

Lorenz curve is continuous. However, it is not differentiable. For every at   

we obtain  

  

a

t Y

X

Y

YYY
)rq(

)(u
dp)x(fxu

1
)r(L)q(LL





  

where at  . We obtain 
Y

Y
)(u

rq

L









. When  0rq  then  a  

and 
Y

0Y
u

rq

L







. Hence, )p(L

Y
 has the left derivative 

Y

0

qp

Y
u

dp

)p(dL














.  

For every az   we obtain  

 )q(L)s(LL
YYY

)qs(
)(u

dp)x(f)x(u
1

X

s

q

X

Y

 




, 

where za   . We obtain 
Y

Y
)(u

qs

L









. When  0qs  then  a  

and 
Y

0Y
du

qs

L









. Hence, )p(L

Y
 has the right derivative 
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






















qp

Y

Y

0

Y

0

qp

Y

dp

)p(dLudu

dp

)p(dL


. (2.1.12) 

Consequently, )p(L
Y

 is continuous in the point )a(Fq
X

  but it is not 

differentiable and has a cusp for qp  . 

Remark. If the transformation )x(u  is continuous then 0d   and we obtain 

equality in (2.1.12) and the Lorenz curve is differentiable with the derivative 

Y

p

Y

y
)p(L


 .  

For progressive taxations, )x(u  is the post-tax income and 
x

)x(u
 measures 

the proportion of post-tax income to the initial income and it is a monotone 

decreasing function satisfying the condition (i) and the Lorenz curve is 

increased and )y(F
Y  Lorenz dominates )x(F

X . If the taxation is a flat tax then 

(ii) holds and the Lorenz curve and the Gini value remain. The third case in 

Theorem 2.1.1 indicates that the ratio 
x

)x(u
 is increasing and the Gini 

coefficient increases, but this case has minor practical importance. If transfer 

policies are studied, then the ratio 
x

)x(u
 measures the relative effect of the 

transfer. If it decreases the relative effect of the transfer decreases with 

increasing income and the inequality is reduced. If 
x

)x(u
 is constant, the 

transformation )x(u  is proportional to the initial income and the Lorenz curve 

and the Gini value remain.  
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2.2  Additional Properties of Lorenz Curves for 

Transformed Income Distributions 

We follow Fellman (2012b) who considered income X, defined on the 

interval  b,a , where  bxa0 , with the distribution function )x(FX , 

density function )x(f
X

, mean 
X

 , percentile 
p

x  defined as p)x(
pX

F   and 

Lorenz curve )p(L
X

. The general formulae are 

 
b

a

XX
dx)x(fx  (2.2.1) 

and 

 

px

a

X

X

X
dx)x(fx

1
)p(L


, (2.2.2) 

where bxa
p
 .  

We consider the transformation )X(uY  , where )(u   is non-negative, 

continuous and monotone-increasing. Since the transformation can be 

considered as a tax ( x)x(u  ) or a transfer policy ( x)x(u  ), the transformed 

variable is either the post-tax or the post-transfer income.  

The mean and the Lorenz curve for variable Y are  

 
b

a

XY
dx)x(f)x(u  (2.2.3) 

and 

 

px

a

X

X

X
dx)x(f)x(u

1
)p(L


, (2.2.4) 
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In the following, we consider additional properties of the Lorenz curve 

)p(L
Y

. If 
x

)x(u
 is constant, then according to Theorem 1 (ii), )p(L)p(L

XY
  

and the transformed Lorenz curve is identical with the initial one, a case which 

will be ignored. 

(a) The ratio 
x

)x(u
 is monotonically decreasing. 

According to Theorem 2.1.1, )y(
Y

F  Lorenz dominates )x(
X

F . We 

introduce the values M  and m  such that 


M
x

)x(u
lim

ax
 and 

0m
x

)x(u
lim

bx



. Consequently, 0m

x

)x(u
M  .  

Let p)x(
pX

F   and q)x(
qX

F  . Assume that qp   and that 

bxxxa qp   and consequently, 

m
x

)x(u

x

)x(u

x

)x(u
M

q

q

p

p
 . 

Note that points p  and q  are chosen arbitrarily and that the equality signs 

cannot be ignored because we also include the functions 
x

)x(u
, which are not 

uniformly strict decreasing in the class of transformations. Hence, we have to 

include members for which equalities hold for almost the whole range and, in 

addition, sub-intervals in which strict inequalities hold can be chosen arbitrarily 

short and located arbitrarily within the range ( ,a b ). If one pursues general 

conditions, the inequalities (2.2.8) and (2.2.9) obtained below cannot be im-
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proved. If we assume that 
x

)x(u
 is monotonically decreasing, then )x(u  must 

be continuous, otherwise 
x

)x(u
 should have positive jumps (Fellman, 2009). 

From 
x

)x(u

x

)x(u

p

p
  it follows that )()( pp xuxxux  . The integration over 

the interval 
qp

xxx   yields  

 

q

p

q

p

x

x

Xp

x

x

Xp
dx)x(f)x(xudx)x(f)x(ux  

 

q

p

q

p

x

x

Xp

x

x

Xp
dx)x(xf)x(udx)x(f)x(ux  

   )p(L)q(L)x(u)p(L)q(Lx
XXXpYYYp

 
 

and 

    )p(L)q(L
x

)x(u
)p(L)q(L

XX

Yp

Xp

YY





. (2.2.5) 

Analogously, it follows from 
q

q

x

)x(u

x

)x(u
  that )x(xu)x(ux

qq
 , and we 

obtain 

    )p(L)q(L
x

)x(u
)p(L)q(L

XX

Yq

Xq

YY





. (2.2.6) 

Consequently, 

     )()()()(
)(

pLqLpLqL
x

xu
YYXX

pY

Xp




 )()(

)(
pLqL

x

xu
XX

qY

Xq





. (2.2.7) 
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When 0p   in (2.2.7), then 0)p(L
Y

 , 0)p(L
X

 , M
x

)x(u

p

p
  and 

one obtains  

 )q(L
x

)x(u
)q(L)q(L

M
X

qY

Xq

YX

Y

X








 . (2.2.8) 

The lower bound gives an evaluation of how much the Lorenz curve has 

increased. The upper bound is of minor interest and is commented on later.  

When 1q   in (2.2.7), then 1)q(L
Y

 , 1)q(L
X

 , m
x

)x(u

q

q
  and one 

obtains  

   )p(L1
x

)x(u
1)p(L)p(L1

m
1

X

pY

Xp

YX

Y

X 







. 

In order to compare these inequalities with the inequalities in (2.2.8), we 

change the argument from p to q, and the inequalities are 

   )q(L)q(L1
m

1
YX

Y

X




 

  )q(L1
x

)x(u
1

X

qY

Xq





. (2.2.9) 

The lower bound gives an evaluation of how much the Lorenz curve has 

increased. The upper bound is of minor interest and is discussed later.  

Inequality (2.2.8) is applicable to small values and inequality (2.2.9) to large 

values of q. For small values of q, we consider the difference  

 )q(L
x

)x(u
)q(L)q(D

X

qY

Xq

Y1



  (2.2.10) 
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and for large q we consider the difference  

  )q(L1
x

)x(u
1)q(L)q(D

X

qY

Xq

Y2





. (2.2.11) 

In general, 
Y

q

Y

qY
)x(uy

dq

)q(dL


  and 

X

qX
x

dq

)q(dL


 .  

The ratio 
x

)x(u
 is decreasing and consequently 

  0x
dq

d

x

y

dx

d

x

y

dq

d

x

)x(u

dq

d
q

q

q

qq

q

q

q













































. 

Now we differentiate )q(D
1

and obtain  

 1
( ) ( ) ( )( )

( )

( )
( ) 0

q q q qX X

X

Y Y q X Y q

qX

X

Y q

u x u x x u xd D q d
L q

dq x dq x

u xd
L q

dq x

 

   





 
    

 
 

 
   

 
 

. 

Consequently )q(D
1

 is increasing from zero at 0q   to a maximum 

)q(D
01

 for 
0

qq   (say).  

Now we differentiate )q(D
2

 and obtain  

 
 
















q

q

Y

X
X

Y

q

Y

q

x

xu

dq

d
qL

xuxu

dq

qDd )(
)(1

)()()(2







  0
)(

)(1 















q

q

Y

X
X

x

xu

dq

d
qL




. 
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Consequently )q(D
2

 is decreasing from )q(D
02

 to zero when 1q  . The 

point 
0

q , at which the shift from (2.2.10) to (2.2.11) is performed, is chosen so 

that )q(D)q(D
0201

 .  

Now,  

  )q(L
x

)x(u
)q(L)q(L1

x

)x(u
1)q(L

0X

qY

Xq

0Y0X

qY

Xq

0Y

0

0

0

0








 ; 

that is, 

0
x

)x(u
1

0

0

qY

Xq





 and 

X

Y

q

q

0

0

x

)x(u




 . 

Consequently,  

)q(L)q(L)q(D)q(D
0X0Y0201

  

Since the ratio 
Y

X

x

)x(u




 is decreasing, the difference 0

x

)x(u

X

Y

q

q

0

0 



 shifts 

its sign from plus to minus at point 
0

q . Hemming and Keen (1983) gave the 

condition for Lorenz dominance that 
x

)x(u
 crosses the 

X

Y




 level once from 

above. Our results above have shown that the crossing point is 
0

q . The 

condition obtained can also be otherwise explained. If we write it as 

X

q

Y

q 00
x)x(u


 , we obtain the formula 

00 qq

X

qq

Y

dq

)q(dL

dq

)q(dL


 , that is, the 

Lorenz curves )q(L
Y

 and )q(L
X

 have parallel tangents and the distance 

)q(L)q(L
0X0Y

  between the Lorenz curves is maximal for 
0

qq  . 
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We define the difference function as 

 









02

01

qq)q(D

qq)q(D
)q(D

~

for

for
, (2.2.12) 

and the lower bound of )p(L
Y

 is 

 

 


















0X

qY

Xq

0X

qY

Xq

qq)q(L1
x

)x(u
1

qq)q(L
x

)x(u

)q(L
~

for

for









. (2.2.13) 

Figure 2.2.1 shows the Lorenz curves )q(L
Y

, )q(L
X

, the lower bound 

)q(L
~

and the difference )q(D
~

 between )q(L
Y

 and the lower bound )q(L
~

. 

Remarks. The variable Y Lorenz dominates X, and the upper bounds in 

(2.2.8) and (2.2.9) tells us nothing about the reductions in the inequality. The 

upper bound contains the maximum value M  and one has to take it for granted 

that it is also inaccurate when M is finite. In addition, there may be situations in 

which M . The minimum value m can be zero, and in this case the upper 

bound is one and the obvious inequality 1)p(L
Y

  is obtained. 
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Figure 2.2.1 (Fellman (2012b) A sketch of the Lorenz curves )(qLY , )(qLX , the lower 

bound )(
~

qL , and the difference )(
~

qD  between )(qLY  and the lower bound )(
~

qL  when 

the transformed variable Lorenz dominates the initial one.  

(b) The ratio 
x

)x(u
 is monotonically increasing. 

The analysis of this case follows similar traces to the earlier study and the 

results are analogous to our earlier results, but in this case )(xu  may be 

discontinuous. Only the inequality signs have changed their directions. We 

introduce the values M  (  ) and m ( 0 ) such that  

m
x

)x(u
lim

ax


  and 
M

x

)x(u
lim

bx


  

and consequently  M
x

)x(u
m0 . Note, that in this case the points p  

and q  are also chosen arbitrarily and that the equality signs cannot be ignored 
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because we also include functions 
x

)x(u
 which are not uniformly strictly 

increasing in the class of transformations. Hence, we have to include members 

for which equalities hold for almost the whole range and, in addition, the 

subintervals where strict inequalities hold can be arbitrarily short and can be 

located arbitrarily within the range. If one pursues general conditions, the 

inequalities (2.2.17) and (2.2.18) obtained below cannot be improved. 

If )x(u  is discontinuous, the discontinuities can only be a countable number 

of finite positive jumps. Under such circumstances )x(u  is still integrable. 

We use the same notations as above and assume that p)x(
pX

F  , 

q)x(
qX

F  , that qp   and consequently that 
qp

xxx  . Now, 

q

q

p

p

x

)x(u

x

)x(u

x

)x(u
 . Consider )x(xu)x(ux

pp
 . The integration over the 

interval 
qp

xxx   yields  

 

q

p

q

p

x

x

Xp

x

x

Xp
dx)x(f)x(xudx)x(f)x(ux  

 

q

p

q

p

x

x

Xp

x

x

Xp
dx)x(xf)x(udx)x(f)x(ux  

   )p(L)q(L)x(u)p(L)q(Lx
XXXpYYYp

 
 

and 

    )p(L)q(L
x

)x(u
)p(L)q(L

XX

Yp

Xp

YY





. (2.2.14) 

Analogously, if we consider )x(xu)x(ux
qq

  we obtain 
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   )p(L)q(L)x(u)p(L)q(Lx
XXXqYYYq

 
 

and  

    )p(L)q(L
x

)x(u
)p(L)q(L

XX

Yq

Xq

YY





. (2.2.15) 

Hence, 

    )()()()(
)(

pLqLpLqL
x

xu
YYXX

pY

Xp




 

  )()(
)(

pLqL
x

xu
XX

qY

Xq





. (2.2.16) 

When 0p   in (2.2.16), then 0)( pLY , 0)( pLX , m
x

xu

p

p


)(
 and 

one obtains  

 )(
)(

)()( qL
x

xu
qLqL

m
X

qY

Xq

YX

Y

X








 . (2.2.17) 

Now, the initial variable X Lorenz dominates the transformed Y and the upper 

bound is the interesting case.  

When 1q   in (2.2.16), then 1)1( YL , 1)( qLX , M
x

xu

q

q


)(
 one 

obtains  

   )(11)()(1
)(

1 pL
M

pLpL
x

xu
X

Y

X
YX

pY

Xp









 

After a shift from p to q, we obtain 
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    )(11)()(1
)(

1 qL
M

qLqL
x

xu
X

Y

X
YX

qY

Xq









. (2.2.18) 

Now the upper bound is of interest. Formula (2.2.17) is applicable for small 

values and formula (2.2.16) for large values of q. In the following, we consider 

the difference between the upper bound in (2.2.17) and the Lorenz curve )q(L
Y

, 

that is, for small values of q, we obtain 

 )()(
)(

)(1 qLqL
x

xu
qD YX

qY

Xq





. (2.2.19) 

For large values of q, we consider the difference between the lower bound in 

(2.2.18) and the Lorenz curve )q(L
Y

, that is, for small values of q, we obtain 

   )q(L)q(L1
x

)x(u
1)q(D

YX

qY

Xq

2





. (2.2.20) 

In general, 
Y

qY
y

dq

qdL




)(
 and 

X

qX
x

dq

qdL




)(
.  

The ratio 
x

xu )(
 is increasing and consequently, 

  0




























q

q

q

qq

q
x

dq

d

x

y

dx

d

x

y

dq

d
. 

Now we differentiate )q(D
1

 and note that 
q

q

x

xu )(
 is increasing and obtain  

 

















Y

q

q

q

Y

X
X

X

q

q

X

Y

q xu

x

xu

dq

d
qL

x

x

xu

dq

qDd











)()(
)(

)()(1 0
)(

)( 














q

q

Y

X
X

x

xu

dq

d
qL




. 

Consequently )q(D
1

 is increasing from zero to a maximum for 
0

q . 
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Now we differentiate )q(D
2

 and obtain  

 
 

  0
)(

)(1

)()(
)(1

)()(2

































q

q

Y

X
X

Y

q

q

q

Y

X
X

Y

q

x

xu

dq

d
qL

xu

x

xu

dq

d
qL

xu

dq

qDd










. 

Consequently )(2 qD  is decreasing from a maximum to zero. The point 

denoted 0q , at which the shift from )(1 qD  to )(2 qD  is performed, satisfies 

)()( 21 qDqD  .  

Now,   )()(
)(

)()(1
)(

1 0000

0

0

0

0 qLqL
x

xu
qLqL

x

xu
YX

qY

Xq

YX

qY

Xq









, that is, 

0
)(

1

0

0 
qY

Xq

x

xu




, and 

X

Y

q

q

x

xu






0

0
)(

. 

This condition is identical with the condition in which 
x

xu )(
 is decreasing. 

Again, the condition 0
)(

1 
pY

Xp

x

xu




 can be written 

X

q

Y

q xxu


00

)(
  and we 

obtain the formula 
00

)()(
qq

X
qq

Y

dq

qdL

dq

qdL
  , that is, the Lorenz curves 

)q(L
Y

 and )q(L
X

 have parallel tangents and the distance between the Lorenz 

curves is maximal. 
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Figure 2.2.2  (Fellman 2012b) A sketch of the Lorenz curves )(qLY , )(qLX , the upper 

bound )(
~

qL , and the difference )(
~

qD  between the upper bound )(
~

qL  and )(qLY when 

the transformed variable is Lorenz dominated by the initial one.  

We define the difference function as 

 









02

01

for)(

for)(
)(

~

qqqD

qqqD
qD , (2.2.21) 

and the upper bound of )q(L
Y

 is 

 

 


















0
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qqqL
x
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qY

Xq
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

. (2.2.22) 

In Figure 2.2.2, we sketch the Lorenz curves )q(L
Y

, )q(L
X

, the upper 

bound )q(L
~

 and the difference )q(D
~

 between the upper bound )q(L
~

 and 

)q(L
Y

. 
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Now the lower bounds are of minor interest because the initial variable X 

Lorenz dominates Y. Note that 0m   is possible in some situations and the 

lower bound in (2.2.17) can be zero. Note that M can be great and even M  

is possible in some situations and the lower bound in (2.2.18) can be even 

negative.  

Example 2.2.1 The Pareto distribution. Consider income X with the Pareto 

distribution  xxXF 1)(  and 1)(  xxf X , where 1  and 1x  .  

Now, 
1

X






  and the Lorenz curve   

 1

11)(


 ppLX .  

From pxx ppXF  1)(  we obtain   

1

1


 pxp
.  

Let the transformation be x)x(uY   ( 10   ) so that the function 








 
1

1

x

1
x

x

x

x

)x(u
 is decreasing. We obtain 









Y , the Lorenz 

curve   



 p11)p(L
Y
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For 1 , the ratio 
x

xu )(
 is decreasing, this case being sketched in Figure 

2.2.1, and if 1  the ratio 
x

xu )(
 is increasing, this case being sketched in 

Figure 2.2.2. 

2.3  Regional and Temporal Variation in the Income 

Inequality 

We start with an example from Finland. 

Example 2.3.1. Finland 1971-1990. We illustrate our methods using data 

from Finland from 1971 to 1990 (Fellman et al., 1996). The theoretical analyses 

of the Finnish data are presented more in detail in Chapter 5. The base x for 

taxes includes all taxable income. From this we subtract direct taxes t to get the 

base for all non-taxable benefits b. These are child allowances and housing 

subsidies. We have standardized the income variables to be comparable across 

households of different sizes using the OECD equivalence scale, which assigns 

the weight of 1.0, 0.7 and 0.5 equivalent adults to the first and additional adults 

and children, respectively. We show in Table 2.3.1 the estimated generalized 

Gini coefficients for different values of the parameter ν and the relevant income 

concepts. Under the actual column we see the inequality indices for original 

income, x, post-tax pre-transfer income txy   and final income 
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btxby  . Household disposable income per equivalent adult is equal to 

btx  .  

We observe in Figure 2.3.1 that the Gini coefficients of original income for 

all ν´s decrease monotonically over the period, 1971-1990, indicating decreas-

ing income inequality.  

 

Figure 2.3.1  Generalized Gini coefficients in Finland, 1971-1990, for different ν´s. 

Eriksson and Jäntti (1997) showed that, in Finland, earnings inequality 

dropped dramatically between 1971 and 1975 and continued to decrease until 

1985. From 1985 to 1990 there was a substantial increase in the inequality of 

earnings, comparable in magnitude to that found in the UK and US. Further-

more, they showed that the rise in inequality increased in Finland between 1985 

and 1990 but this followed a sharp decline during the 1970s and early 1980s. 

The Figure 2.3.1 indicates that the conclusions given by Fellman et al. (1996) 

and Eriksson and Jäntti (1997) are similar for the period up to 1985 but after 

that they differ. 
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Table 2.3.1  Inequality of income in Finland 1971-1990. Generalized Gini  

coefficients for pre-tax, post-tax and post-transfer income for actual incomes.  

    Actual 

 Year x tx   btx   

 1971 0.193 0.176 0.173 

 1976 0.183 0.168 0.165 

1.5 1981 0.171 0.159 0.154 

 1985 0.172 0.155 0.151 

 1990 0.168 0.147 0.145 

 1971 0.294 0.271 0.267 

 1976 0.281 0.259 0.255 

2.0 1981 0.264 0.246 0.239 

 1985 0.265 0.241 0.235 

 1990 0.253 0.224 0.222 

 1971 0.359 0.333 0.328 

 1976 0.346 0.320 0.315 

2.5 1981 0.326 0.303 0.295 

 1985 0.327 0.299 0.291 

 1990 0.309 0.275 0.273 

 1971 0.405 0.378 0.372 

 1976 0.394 0.365 0.359 

3.0 1981 0.371 0.346 0.335 

 1985 0.373 0.342 0.332 

 1990 0.349 0.313 0.311 

 1971 0.512 0.483 0.476 

 1976 0.507 0.472 0.465 

5.0 1981 0.476 0.447 0.433 

 1985 0.482 0.448 0.434 

 1990 0.444 0.405 0.402 

Source: Fellman et al. (1996). 

Note: x is actual pre-tax income, t denotes taxes and b benefits.  

Gottschalk & Smeeding (1997) compared the trends in inequality in different 

countries during the last decades in the 20
th
 century. They noted marked differ-

ences. The first group consists of countries that experienced at least as large an 

increase in inequality as in the United States. This group includes only United 



Chapter 2  Income Transformations          71 
 

http://www.sciencepublishinggroup.com 

Kingdom. A second group which experienced substantial increases in inequality, 

but less than the United States and United Kingdom includes Canada, Australia 

and Israel. France, Japan, The Netherlands, Sweden and Finland form a third 

group with positive, but quite small changes in earnings inequality over the 

1980s. Figure 2.3.1 agrees with the findings by Gottschalk and Smeeding. 

While even the Nordic countries experienced some increase in earnings during 

the 1980s, they started from very low levels, resulting from a long secular 

decline in inequality. Finally, Italy and Germany form a small group that experi-

enced no measurable increase in earnings inequality during the 1980s.  

Bach et al. (2009) analyzed income distributions in Germany (1932-2003) 

using several indicators of income inequality. They found a modest increase of 

the Gini coefficient, a substantial drop of median income and a remarkable 

growth of the income share accruing the economic elite that is the 0.001 percent 

of persons in the population. Their findings are supported by a relative differ-

ence between mean and median income that measures the skewness of the 

distribution: a rise in this measure of inequality indicates that incomes in the 

upper half of the distribution have increased more than the lower half.  

In contrast to the findings for Finland (Fellman et al., 1996), income inequal-

ity in the United States has increased dramatically over the past 30 years. For 

instance, for households headed by working-age individuals, market incomes in 

the upper part of the distribution show an upwards trend in almost all periods 

since 1978, while they increased remarkably little in the middle and show large 

and sustained declines at the bottom during and after recessions. This is 

particularly true for the recent economic crisis. 

Levy and Murnane (1992) presented a thorough study of the income 

distribution in US and discussed the variation in the inequality. For males they 

found that the inequality moved from stability or gradual increases in the 1970s 
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to rapid increases in 1980s. For females they noted that annual earnings 

inequality moved from modest decline in the 1970s to increases in 1980s. They 

gave detailed interpretation of these general findings based on the variations in 

the composition of the labour force. 

Yun (2006) studied the earnings inequality in US, 1969-1999 using different 

inequality measures; the ninetieth-tenth percentile log wage differential, the 

coefficient of variation, the Gini coefficient, the Theil index and the variance of 

log earnings. All measures identify an increase in the inequality. The increasing 

trends varied. The inequality was stable until 1980, steadily increased from 

1980 to 1986, was stable again from 1987 to 1992 an increased thereafter. Autor 

et al. (2008) considered income inequality in US, 1963-2005. They found 

increasing trends and stressed that this trend was not an ―episodic‖ one, but a 

continuing increase reflecting the mechanical confounding effects of changes in 

labour force composition. They provided an overview of the literature on U.S. 

wage inequality and discussed if the substantial increase since the 1980s can be 

considered as an episodic event or a continuous development. 

Heathcote et al. (2010) conducted a systematic empirical study of cross-

sectional inequality in the United States. They found a large and steady increase 

in wage inequality between 1967 and 2006. Taxes and transfers compress the 

level of income inequality, especially at the bottom of the distribution, but have 

little effect on the overall trend. Meyer and Sullivan (2011) found that post-tax 

income inequality started to increase later (in the late 1970s) than that of pre-tax 

income and that its increase in the 1980s occurred at a slower rate. 

Analysing earlier results for US, Gottschalk and Danziger (2005) found that 

the development of male wage and family income inequality were largely 

comparable over the period 1975 to 2002. Bargain et al. (2011) noted increasing 

income inequality during the late 1970s and early 1980s. Furthermore, they 
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stated that the usual approach for evaluating the role of taxation as a driver of 

overall inequality trends is to compare income inequality measured before and 

after taxes (see e.g. Gottschalk & Smeeding 1997). However, tax burdens and 

their impact on the income distribution are determined by both tax schedule and 

tax base. For instance, a given progressive income tax schedule redistributes 

more when the distribution of taxable incomes becomes more dispersed, and 

very little if everybody earns about the same (Musgrave & Thin 1948; 

Dardanoni & Lambert 2002). Bargain et al. (2011) concluded that main findings 

are as follows. The increase in post-tax income inequality was slower than that 

of pre-tax inequality indicating that the redistributive role of the tax system has 

increased over time. However, their decomposition reveals that most of this 

increase in redistribution was not due to the policy effect but a mechanical 

consequence of the rising inequality in pre-tax income.  

2.4  Estimation of Gini Coefficients 

Fellman (2012a) analysed the estimation of Gini coefficients using Lorenz 

curves. Primary income data yields the most accurate estimates of the Gini 

coefficient. However, the estimation must often be based on tables with grouped 

data or on Lorenz curves. The Lorenz curves are usually defined for five 

quintiles or for 10 deciles. As explained above in Section 1.1 the Gini coeffi-

cient is defined as the ratio of the area between the diagonal and the Lorenz 

curve and the area of the whole triangle under the diagonal. For five quintiles, 

the trapezium rule is the most commonly used method. However, this rule 

yields for every trapezium positive bias for the estimate of the area under the 

Lorenz curve and, consequently, the rule causes negative bias for the Gini 

coefficient. Simpson ś rule is better fitted to the Lorenz curve, but demands an 

even number of subintervals of the same length. That is, Gini coefficients can 

be based on Lorenz curves given in deciles. 
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Various attempts have been made to produce more exact estimates. Gastwirth 

(1972) introduced interval estimates of the Gini coefficient in order to measure 

the accuracy of the estimates. Needleman ś study (1978) starts from the 

trapezium estimate of the Gini coefficient GL. He then introduces an improved 

upper estimate GU. His final estimate follows the ―two-thirds rule‖ that is 

3

2

3

UL GG
G  . McDonald and Ransom (1981) considered the Γ density, 

applied Monte Carlo methods and introduced lower and upper bounds of the 

Gini estimates.  

Golden (2008) showed how a quick approximation of the Gini coefficient can 

be calculated empirically, using numerical data in cumulative income quintiles. 

Fellman (2012a) compared different methods. He applied Simpson ś rule and 

considered Lorenz curves with deciles. In addition, he used Lagrange polynomi-

als and generalizations of Golden ś method. 

There are several different situations and, consequently, alternative analyses 

of Gini coefficients have to be performed. When Lorenz curves are considered, 

the simplest situation is that they are defined for five quintiles or for 10 deciles. 

In the first case, the most commonly used method is the trapezium rule. For 

Simpson ś rule, the number of subintervals should be even and the intervals 

should have the same length. This means, for example, that Lorenz curves with 

10 deciles are suitable. One has three L values for each doubled subinterval. The 

area under this part of the Lorenz curve is estimated so that the Lorenz curve is 

approximated by a parabola obtaining the same L values. Consequently, the 

comparison of different rules can be performed for Lorenz curves with deciles. 

Following Fellman (2012a) we assume a Lorenz curve )( pL  with deciles. 

Let the observed values of the cumulative Lorenz curve be ip  and 
i

L  for 
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10...,,1,0i . Note that 10/ipi  , ( 10...,,1,0i ), that 00 L  and that 110 L . 

According to the trapezium rule, the estimated area under the Lorenz curve is  

   ii

i

ii ppLLI  



 1

9

0

1½
~

 (2.4.1) 

and the estimated Gini coefficient, TG  is I
~

21 . Every trapezium yields a 

positive bias to the estimated area, as can be seen in Figure 2.4.1. Since the 

biases obtained add and no elimination of biases can be performed, the 

estimated Gini coefficient always has a negative bias.  

 

Figure 2.4.1  A sketch showing the bias in the trapezium rule. 

Compared to the trapezium rule, Simpson ś rule gives more accurate 

approximations. As stressed above, Simpson ś rule demands two restrictions: 

the number of subintervals has to be even and the subintervals have to be of 

equal length. In order to obtain Simpson ś rule, the subintervals should be 

grouped two by two. Each doubled subinterval has three L values. The area 

under this part of the Lorenz curve is estimated such that a parabola obtaining 

the same L values approximates the Lorenz curve. Simpson ś rule obviously 

yields exact results for quadratic curves but, in general, this also holds for cubic 

curves. Assuming 2n subintervals, the approximate area formula for a doubled 

interval is  

Trapezium 
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the total sum is  
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
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4

0

22122 4
3

1~

i

iii LLL
n

I  (2.4.2) 

and IGS

~
21 .  

Golden (2008) gave a detailed account of an alternative method based on 

Lorenz curves with quintiles. He considered p and L in percentages. The layout 

of the method is presented in Table 2.4.1. First he determined where the 

cumulative income shortfall is greatest and defined Z as the largest quintile 

point of the cumulative income shortfall from perfect equality divided by 100. 

In order to obtain the largest cumulative income shortfall he defined the trans-

formed variable 20
~

1  ii LL . This transformation, 20LL
~

1ii



, indicates a 

search for an interval at which 
i

L  shifts from increases faster than 
i

p  to slower 

increases. For low i ś, the transformed value ii LL 
~

. Later, there is a first i 

value such that 
ii

LL
~
 . For this value, one finds an interval for which L is 

closely parallel with the diagonal, the greatest shortfall is obtained, and one 

defines 100/)
~

20( iLiq  . The estimated Gini coefficient in percentages, 
G

G , 

is )3(50 qqGG  . When this method was applied to 621 income observations, 

Golden (2008) noted that his approach performed better than the trapezium rule, 

also stressing that his method could be applied to Lorenz curves with deciles.  

Fellman (2012a) generalized Golden ś method in the following way. If the 

Lorenz curves are given in deciles, then Golden ś transformation should be 

10
~

1  ii LL  and if the 
i

p ś are not equidistant, then one has to define 
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11

~
  iiii ppLL . Following Golden ś rule, these processes have to continue 

until ii LL 
~

. Then introduce 100/)
~

( ii Lpq   and )3(50 qqGG  . 

Table 2.4.1  A layout of a Lorenz curve with deciles. Following Golden (2008), the data 

is given in percentages. The transformed 20
~

202020  ii LL  values appear in the text.  

i 0 1 2 3 4 5 

ip  0 20 40 60 80 100 

iL  00 L  L 20L  40L  60L  80L  100100 L  

iL
~

 0
~

0 L  20

~
L  40

~
L  60

~
L  80

~
L  100

~
L  

In many empirical situations, the income distribution )x(F  is given in 

grouped tables. If the mean of or total incomes in the groups are known, the 

cumulative distribution can be considered as a Lorenz curve, but the subinter-

vals are usually not of constant length. The trapezium rule holds, but it still 

yields a positive bias for the area and negative bias for the Gini coefficient.  

An obviously better alternative is to approximate the Lorenz curve with 

Lagrange ś interpolation (Berrut & Trefethen, 2004). Lagrange polynomials of 

the second degree can be considered as a generalisation of Simpson ś rule and 

do not demand subintervals of equal length, but the number of subintervals 

should still be even. The polynomials obtained have to be integrated in order to 

yield approximate areas and Gini coefficients. If the subintervals are of the 

same length, the Lagrange polynomial method is identical with Simpson ś rule. 

Fellman (2012a) applied the Lagrange interpolation of second degree. 

However, he had to assume an even number of subintervals. Now the Lagrange 

polynomial is 



78         Mathematical Analysis of Distribution and Redistribution of Income 
 

http://www.sciencepublishinggroup.com 








































 



))((

))((

))((

))((

))((

))((
)(

2221222

212
22

2122212

222
12

1

0 222122

2212
2

iiii

ii
i

iiii

ii
i

n

i iiii

ii
i

pppp

pppp
L

pppp

pppp
L

pppp

pppp
LpL

 (2.4.3) 

This approximate polynomial must be integrated in order to obtain an 

estimate of the area under the Lorenz curve.  

The comparison between different estimation methods is in general difficult 

to perform. These difficulties are mainly caused by the fact that the true Gini 

coefficient is unknown, but sometimes, where more detailed studies have 

already resulted in very accurate estimates, the comparisons are possible. Some 

authors (e.g., Gastwirth, 1972; Mehran, 1975; McDonald & Ransom, 1981; 

Rigo, 1985; Giorgi & Pallini, 1987) have introduced interval estimates, but 

these are often rather broad and it is still difficult to identify the best method. 

Such comparison problems are eliminated if the numerical estimations are 

applied to theoretical distributions.  

Needleman (1978) stated that as the Lorenz curve is convex, the trapezium 

approximation is always greater than the actual area under the curve, so that the 

estimate based on this approximation is always less than the actual value of the 

coefficient. Furthermore, he noted that most authors using the trapezium 

approximation indicate that they are aware of the bias involved, but either 

assume the error so small as to be insignificant, or else use a large number of 

intervals in the belief, usually justified, that the bias will then be negligible. 

McDonald and Ransom (1981) introduced lower and upper bounds of the Gini 

estimates. In order to estimate the bounds of the Gini coefficient estimates, they 

considered the income to have a Γ density, that is, 
)(
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corresponding 




)1(

?(




G  and  /  and applied Monte Carlo 

methods.  

In order to perform comparisons between the estimated and theoretical Gini 

coefficients Fellman (2012a) analysed classes of theoretical Lorenz curves with 

varying Gini coefficients. He compared Gini estimates for the Pareto 

distributions. If one defines the Pareto distribution as  xxF 1)( , where 

1x   and 1 . Then the frequency function is 1x)x(f   , the mean is 

1




 , the quantiles are 



 1

1

1














p
xp , the Lorenz curve 

  

 1

11)(


 ppL  and the Gini coefficient 
12

1





G . Fellman considered 

0.55.1  , then the Gini coefficient satisfies the inequalities 

500.0111.0 G . This G interval corresponds to the most common Gini 

coefficients. Fellman’s results appear in Table 2.4.2 and Figure 2.4.2. Note that 

Simpson ś and Golden ś rules yield similar accuracy, but the trapezium rule 

shows the largest errors for all levels of Gini coefficients. This theoretical study 

indicates that Golden ś rule is not uniformly better than the trapezium rule. 

Gastwirth (1972) presents interval estimations of the Gini coefficient. The 

exact Gini estimate on Current Population Surveys (CPS) income data for 1968 

was computed by Tepping, his result being 0.4014. Gastwirth ś Table 2 shows 

Tepping ś data grouped into a 10 subgroup Lorenz curve. He compares his Gini 

interval estimates with Tepping ś finding. Gastwirth (1972) considers a 

minimum of restrictive conditions, obtaining the interval 4083.03883.0 G . 

Mehran (1975) suggests an alternative estimation method, obtaining the interval 

estimate 4087.0G3883.0  . The grouping limits are not equidistant and one 
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cannot apply Simpson ś rule. Applying the trapezium rule yields 0.3883 and the 

negative bias is apparent. The Lagrange rule yields 0.4033 and the modification 

of the Golden rule yields the rather inaccurate estimate 0.3740.  

Table 2.4.2  (Fellman, 2012a). The estimation of the Gini coefficient applied to the 

Lorenz curve for the Pareto distributions. Note that the estimated Gini coefficients 

according to the trapezium rule are inaccurate and show negative biases. Simpson ś 

and Golden ś rules yield similar accuracy, but Golden is best for large Gini values. 

  
Estimates 

  
Error 

 
G Trapezium Simpson Golden Trapezium Simpson Golden 

11.11 10.858 11.044 11.104 -0.253 -0.067 -0.008 

12.50 12.206 12.419 12.529 -0.294 -0.081 0.029 

14.29 13.935 14.185 14.370 -0.350 -0.101 0.084 

16.67 16.235 16.535 16.833 -0.431 -0.132 0.166 

20.00 19.442 19.816 20.291 -0.558 -0.184 0.291 

25.00 24.223 24.717 25.476 -0.777 -0.283 0.476 

33.33 32.102 32.820 34.026 -1.232 -0.513 0.693 

50.00 47.481 48.730 50.317 -2.519 -1.270 0.317 

 

Figure 2.4.2  Estimation errors in the Gini coefficients estimated by the trapezium, 

Simpson, and Golden rules. Note that Simpson ś and Golden ś rules yield similar 

accuracy, but the trapezium rule shows the largest errors (Fellman, 2012a). 
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Lorenzen (1980) presents information about the total distribution of income for 

households in Germany in 1973 in his Tabelle 2. The Gini coefficient calculated 

by Lorenzen is based on data pooled in his Tabelle 3, which yielded 0.30. Using 

Lorenzen ś Tabelle 3, Fellman performed a comparison of the estimates obtained 

based on the trapezium rule and the Lagrange rule. The available empirical data 

cannot yield a comparison of the accuracy of the two methods. The estimated 

Gini coefficient according to the trapezium rule shows negative biases compared 

to Lorenzen ś result, being 0.2920. The Lagrange interpolation yields the estimate 

0.3486 and the modified Golden method 0.3002.  

This study indicates that the biased trapezium rule is almost always inferior 

and shows negative biases. No method however is uniformly optimal. Note that 

Simpson ś and Golden ś rules yield similar accuracy. Golden ś method is 

usually of medium quality, but its accuracy fluctuates.  
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