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Sonatrach, Division Exploration, Boumerdès, Algeria. Email: said_gaci@yahoo.com 

Summary 

This chapter deals with the characterization of subsurface heterogeneities by 

studying the spatial regularity variation of well logs. The local regularity of these 

signals, considered as multifractional Brownian motions (mBms) paths, is measured 

by the local Hölder exponent H related to the fractal parameter (or the Hurst 

exponent). 

A regularity analysis is performed on datasets measured at four Algerian oil wells 

drilled in different geological contexts. It allows to extract information pertaining 

to subsurface. 

It is shown that the derived regularity profiles, or the Hölder exponent functions, 

mainly those derived from sonic, density and neutron logs, show a clear correlation 

with lithology, and the lithological discontinuities correspond to sudden variations 

of H value. Moreover, for a given well, the obtained regularity logs exhibit a strong 

correlation between them. Therefore, the regularity is a robust property which can 

be successfully used to characterize lithological heterogeneities of layers. However, 

this study does not draw any relation between the recorded physical property and 

its estimated regularity degree for each log. 

 



 

Advances in Data, Methods, Models and Their Applications in Oil/Gas Exploration 
 

228  

6.1  Introduction 

Well logging consists of making a detailed record of rock and fluid properties 

to find hydrocarbon zones in the geological formations intersected by a borehole. 

During this operation, the logging tool is lowered on the end of a wireline into the 

open wellbore to measure the rock and fluid properties of the formation. 

Measurements include electrical properties (resistivity and conductivity at 

various frequencies), acoustic properties, radioactive, electromagnetic, nuclear 

magnetic resonance, and other properties of the rocks and their contained fluids. 

An interpretation of these measurements is then carried out in order to locate and 

quantify potential depth zones containing hydrocarbons. 

Fractal geometry offers an appropriate framework for investigating the spatial 

heterogeneities of different geological patterns (Mandelbrot, 1975, 1977). 

Thanks to its success, this geometry has gained a widespread acceptance in 

various fields of geosciences, particularly in oil and gas engineering. Statistical 

fractals were introduced for the first time by Hewett (1986) to model well logs. 

Then, Hardy and Beier (1994) demonstrated that the well log behavior can be 

fitted with the fractional Brownian motion (fBm). 

The fBm is a non-stationary stochastic fractal model with stationary 

increments. It is indexed by a Hurst exponent (0<H<1) quantifying its 

self-similarity degree. This process exhibits a local regularity H everywhere, thus, 

it is not suitable for studying signals whose regularity varies in time/space, which 

is the case for most geophysical signals. As a consequence, a generalization of the 

fBm, known as a multifractional Brownian motion (mBm), is obtained by 

allowing H to evolve in time (and/or space). 

Though no longer stationary nor self-similar, compared to fBm, the mBm 

process is very versatile and useful to model real signals characterized by a 

http://en.wikipedia.org/wiki/Rock_geology
http://en.wikipedia.org/wiki/Hydrocarbon
http://www.glossary.oilfield.slb.com/Display.cfm?Term=logging
http://www.glossary.oilfield.slb.com/Display.cfm?Term=resistivity
http://www.glossary.oilfield.slb.com/Display.cfm?Term=conductivity
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punctual time (or space) changing regularity. It received increasing attention in 

various research disciplines: geophysics (Wei et al. 2004; Wanliss, 2005; 

Wanliss and Cersosimo, 2006; Cersosimo and Wanliss, 2007; Echelard et al., 

2010 ; Keylock, 2010; Gaci et al., 2010, 2011; Gaci and Zaourar, 2010, 2011a, 

2011b; Luo et al., 2012), image processing (Bicego and Trudda, 2010), traffic 

phenomena (Li et al., 2007), etc. 

In previous works (Gaci et al., 2010; Gaci and Zaourar, 2010, 2011a), sonic 

well logs were assumed to be mBm processes. Then, the depth-dependent 

regularity profiles derived from the logs allowed to perform a lithological 

segmentation, and to investigate heterogeneities of the geological layers crossed 

by the well. In this paper, the regularity analysis is extended to sets of well logs 

recorded in four Algerian oil boreholes. The data collection contains P- and 

S-wave sonic, bulk density, neutron porosity, Gamma ray, electrical resistivity, 

photoelectric absorption factor and natural gamma ray spectroscopy logs. In 

addition to the lithological regularity-based segmentation, this study attempts to 

check for the existence of a possible relation between the physical measurement 

values and their computed local Hölder exponents, and quantify the correlations 

between them for each analyzed well log. 

This paper is structured as follows: Firstly, we give a short mathematical 

description of the fractal models (fBm and mBm), and the method of estimating 

their associated local Hölderian regularity. Secondly, an overview on the used 

well log measurements is presented, followed by a lithological description of the 

logged interval in the borehole. Thirdly, the results obtained from the well logs 

are presented and discussed. Finally, we conclude by recapitulating the main 

findings and giving the perspectives of our research. 
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6.2  Theory 

6.2.1  Local Regularity 

The Hölder exponent is the most generally mathematical tool used to quantify 

the regularity of a signal at any given point. For a stochastic process X whose 

trajectories are continuous but nowhere differentiable, it is defined by: 
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From the geometrical point of view, this definition means that the increments 

X(z)-X(z0) in the neighborhood of z0 are included in a Hölderian envelope 

defined by 
 0)()( 0

zαXzXzX  . The larger )( 0zαX , the smoother the signal at 

z0 and vice-versa. 

6.2.2  Fractional Brownian Motion 

The fractional Brownian motion (fBm) is one of the most popular stochastic 

fractal models. It was introduced by Kolmogorov (1940) and developed by 

Mandelbrot and Van Ness (1968). 

The fBm  0),(  zzBB HH is a zero-mean Gaussian process with 

autocorrelation function: 

    HHH

HH szszsBzBE
222

2

2
)().( 


 (2) 

where 0<H<1 is called the Hurst parameter, >0, s>0 and E. denotes the 

expected value (for H=1/2, the obtained process is the Brownian motion B(t)). 
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This process exhibits a short-range dependence for 0<H<1/2, independence for 

H =1/2 (Brownian motion), and long-range dependence for 1/2<H<1. 

From the regularity point of view, it is proved that its pointwise Hölder 

exponent is almost surely equal to H at every point z. The higher the H value, the 

smoother the fBm trajectories. 

6.2.3  Multifractional Brownian Motion 

Due to its constant regularity, the fBm is not suitable for the analysis of signals 

exhibiting a time/space-varying regularity. To get rid of this drawback, 

multifractional Brownian motion (mBm) was introduced by allowing H to vary 

over depth (Peltier et Lévy-Véhel, 1995; Benassi et al., 1997a). 

The mBm with the functional parameter H(z) is the zero-mean Gaussian 

process defined as:  

                  





0

0

2/12/12/1
)()(

z
zHzHzH

zH sdBszsdBsszzW  (3) 

where    1,0,0: H  is a Hölder continuous function. If  zH  is 

constant,   zW zH  is reduced to a simple fBm. 

The mBm possesses increments, which are generally neither independent nor 

stationary. Unlike fBm, pointwise Hölder exponent )(z
HW  may depend on 

the location and can be described via the functional parameter H(z): at each z, 

)(z
HW is equal to  zH  with probability one (Peltier and Lévy -Véhel 1995; 

Benassi et al., 1997b; Ayache and Taqqu, 2005). This property is very useful to 

model phenomena whose punctual regularity is time (and/or space) changing, 
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and makes mBm extremely versatile. 

6.2.4  Pointwise Estimation of the Hölderian Regularity of mBm 

Due to its accuracy and simplicity, the algorithm suggested by Peltier and 

Lévy-Véhel (1994) is used for estimating the local regularity of mBm paths. It 

is based on the local growth of the increment process Sk,n(i) defined as:  

      
 








2,2

, 1
1 kikij

nk jXjX
n

m
iS , 1<k<n (4) 

where n is the signal length, k is a fixed window size, and m is the largest integer 

not exceeding n/k. 

The local Hölder function H(z) at the point )1(  niz is given by 

  
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6.3  Well Log Measurements 

A well log is a continuous record versus depth or time, or both, of one or more 

physical quantities in or around a well. It is taken downhole, transmitted through 

a wireline to surface and recorded there. In oil and gas exploration, many physical 

formation properties are measured and interpreted in order to locate reservoir 

intervals. The logs used in our study are P- and S-wave velocities (Vp and Vs), 

bulk density (rhob), neutron porosity (nphi), Gamma ray (GR), electrical 

resistivity (LLD, AT20 and AT90), photoelectric absorption factor (PEF) and 

natural gamma ray spectroscopy (Th, U and K). 

In the following, a short description of the well logs investigated in this study 
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is presented. More details can be found in the Oilfield Glossary, available at: 

http://www.glossary.oilfield.slb.com. 

A sonic log displays traveltime of acoustic waves versus depth. This transit 

time measures the capacity of a geological formation to transmit seismic waves. 

Indeed, this capacity varies with lithology and rock textures, and decreases with 

an increasing effective porosity. The sonic log can then be used to calculate the 

porosity of a formation, a very useful property for hydrocarbon exploration. 

A density log is a continuous record of a formation‟s bulk density along the 

length of a borehole. Identically to sonic and neutron logs, it is commonly used to 

calculate porosity. The density measurement is based on the reduction in gamma 

ray flux between a source and a detector due to Compton scattering. It consists of 

emitting gamma rays and recording the gamma rays radiating from the formation. 

The recorded gamma rays are connected to the electron density of the atoms in 

the material between source and detector, and thus to the average bulk density of 

the formation. 

A neutron porosity log is recorded by bombarding the formation with neutrons. 

Hydrogen shows the biggest effect capturing neutrons. Since hydrogen is found 

mainly in the pore fluids, the neutron log responds principally to the formation 

porosity. 

Gamma ray (GR) logs, usually recorded in API units, measure the natural 

radioactivity of a formation. Different types of rocks emit different amounts of 

natural gamma radiations. Since shales contain radioactive elements, they emit 

more gamma rays than other sedimentary rocks. Sandstones/carbonate, on the 

other hand, emit very few gamma rays. This difference in radioactivity between 

rocks allows the gamma tool to distinguish between shales and non-shales. 

http://www.glossary.oilfield.slb.com/
http://en.wikipedia.org/wiki/Seismic_waves
http://en.wikipedia.org/wiki/Petrology
http://en.wikipedia.org/wiki/Effective_porosity
http://en.wikipedia.org/wiki/Hydrocarbon_exploration
http://en.wikipedia.org/wiki/Formation_(geology)
http://en.wikipedia.org/wiki/Bulk_density
http://en.wikipedia.org/wiki/Borehole
http://www.glossary.oilfield.slb.com/Display.cfm?Term=source
http://www.glossary.oilfield.slb.com/Display.cfm?Term=detector
http://www.glossary.oilfield.slb.com/Display.cfm?Term=pore
http://en.wikipedia.org/wiki/Gamma_ray
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Resistivity logs, expressed in ohm-m, record the resistivity of the penetrated 

formation. They can take a wide range of values, and, therefore, for convenience 

are usually presented on a logarithmic scale. The resistivity property is used to 

determine the types of fluids present in the reservoir rocks. Hydrocarbons do not 

conduct electricity (high resistivities) while all formation waters do (low 

resistivities). In practice, several resistivity tool designs can be found, but the 

main difference between them lies in their investigation depth and their vertical 

resolution. 

The photoelectric log measures the unitless photoelectric absorption factor, 

PEF, which is proportional to the average atomic number of the formation. Since 

fluids have very low atomic numbers, their corresponding PEF is very low. 

Dolomites, limestones, clays, heavy minerals and iron-bearing minerals present 

high PEF while sandstones have low PEF. Therefore, the photoelectric log is very 

useful for determining rock matrix properties. 

Gamma-ray spectroscopy is the quantitative study of the energy spectra of 

gamma rays naturally emitted by the formation. The earth‟s natural radioactivity 

is originated from three elements: potassium (K), thorium (Th) and uranium (U), 

which emit gamma rays having different energy levels. A log of natural gamma 

ray spectroscopy is usually presented as a total gamma ray log and the weight 

fraction of the three radioactive elements. The weight fraction is given in 

percentage for potassium, while it is expressed in parts-per-million (ppm) for 

thorium and uranium. 

Potassium is the most abundant main natural radioactivity source. It is found in 

illite, alkali feldspars, micas and some evaporite minerals. A log of potassium is 

used in determining the mineral content of a formation. 

However, thorium is a trace element associated with clays and heavy minerals. 

http://www.glossary.oilfield.slb.com/Display.cfm?Term=formation
http://en.wikipedia.org/wiki/Energy_spectra
http://www.glossary.oilfield.slb.com/Display.cfm?Term=potassium
http://www.glossary.oilfield.slb.com/Display.cfm?Term=thorium
http://www.glossary.oilfield.slb.com/Display.cfm?Term=uranium
http://www.glossary.oilfield.slb.com/Display.cfm?Term=illite
http://www.glossary.oilfield.slb.com/Display.cfm?Term=evaporite
http://www.glossary.oilfield.slb.com/Display.cfm?Term=mineral
http://www.glossary.oilfield.slb.com/Display.cfm?Term=formation
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It is often a good measure of clay content. As regards uranium, it is a soluble trace 

element. That is why it is transported easily and can be precipitated far from its 

source. Uranium occurs generally in carbonates and organic materials, and its 

associated log is exploited in detecting organic material. 

6.4  Geological Setting 

The analyzed log data are recorded in four (04) Algerian exploration wells 

(W1, W2, W3 and W4) located in different parts in Algeria: southwestern (W1 

and W2), southcenter (W3) and southeastern (W4). 

Regarding the well W1, the studied depth interval (905.256-1492.7581m) 

corresponds to the lower Devonian reservoir whose lithological description is as 

follows: 

• Layer L1(905-981m): SHALE gray to dark gray/black, soft to indurated, 

silty, micaceous, laminated, and pyritic clay, with fine layers of 

SANDSTONE, bright gray to beige, very fine to fine, siliceous to 

siliceous-clayey, locally dolomitic, fairly hard often passing into hard 

siltstone. 

• Layer L2 (981-1133m): alternation of SANDSTONE clear gray to 

beige-gray and brown, very fine to fine, rarely medium, siliceous to 

siliceous-clayey, carbonated, pyritic, moderately hard and SHALE, dark 

gray to black, indurated, silty, micaceous, locally pyritic, with 

LIMESTONE layers, gray-beige to clear gray, cryptocrystalline, 

sometimes clayey, moderately hard to hard. 

• Layer L3 (1133-1438m): SANDSTONE, clear gray to gray-beige and brown, 

fine to medium, sub-angular to rounded, siliceous to siliceous-quartzitic, 

pyritic, hard, locally very fine, clay-carbonated, micaceous, brittle, passing 

http://www.glossary.oilfield.slb.com/Display.cfm?Term=clay
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sometimes into SILTSTONE, moderately consolidated to hard, with SHALE 

layers, gray to dark gray, soft to indurated, silty, micaceous, pyritic, with 

laminated, and fossiliferous tendency and LIMESTONE, clear gray, chalky, 

soft, sometimes sandy, moderately hard. 

• Layer L4 (1438-1496m): SHALE, black carbonaceous, indurated, silty, 

micaceous, laminated, carbonated, with LIMESTONE intercalations, white 

and dark gray, microcrystalline, clayey, moderately hard, and intercalations 

of SANDSTONE, gray-beige to white, clayey, moderately consolidated (at 

the top). Presence of pyrite. 

As regards the second well (W2), the investigated depth interval 

(1149.096-1386.84m) covers the lowest Devonian reservoir. Lithologically, this 

interval presents an alternation of LIMESTONE, white, soft, chalky, locally 

fossiliferous, sometimes beige, microcrystalline to crystalline, dolomitic, and 

SANDSTONE, clear gray to gray, very fine to fine, siliceous-clayey, moderately 

hard, locally micaceous, siliceous to siliceous-carbonated, very consolidated, 

with SHALE, dark gray to black, soft to indurated, silty, micaceous, sometimes 

laminated and pyritic. Presence of pyrite. 

For well W3, the analyzed depth range (2579.0652-2716.2252m) corresponds 

to the Triassic reservoir. It is composed of the alternation of SANDSTONE, white 

gray to gray-beige, very fine to medium, clayey, moderately hard with fine layers 

of shale, gray to brown, silty, micaceous, indurated, and SHALE, clear gray to 

beige-gray, silty, micaceous and indurated. 

Finally, the used measurement data of Well W4 are recorded between the 

depths of 3496.6656m and 4800.7524m. This depth interval corresponds to the 

Lias reservoir. It is marked by the predominance of SHALE, brown, rarely gray, 

silty, locally anhydritic, indurated with fine and rare layers of silt, and by the 
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presence of fine layers of SANDSTONE, white gray to white, soft to moderately 

consolidated. 

6.5  Regularity Analysis Applied to Well Logs 

In this section, we show the results of the regularity analysis obtained from 

datasets recorded in the considered four wells (Table 1). The log data 

corresponding, respectively, to wells W1, W2, W3 and W4 are presented in 

Figures 1, 2, 3 and 4. All the used logs are recorded with a sampling rate of 

0.1524m. 

Table 1. Physical properties recorded in the considered wells (W1, W2, W3 and W4). 

Physical property Symbol/ Unit Well W1 Well W2 Well W3 Well W4 

P-wave seismic velocity Vp (m/s) x x  x 

S-wave seismic velocity Vs (m/s)  x  x 

Bulk density rhob (g/cm3) x  x  

Neutron porosity nphi (%) x    

Gamma Ray GR (API) x x x x 

Photoelectric absorption factor PEF x  x  

deep dual laterolog LLD (Ohm.m) x    

Array Induction Two Foot Resistivity AT20 (Ohm.m)  x  x 

Array Induction Two Foot Resistivity AT90 (Ohm.m)  x  x 

Thorium gamma ray spectroscopy Th (ppm) x  x  

Uranium gamma ray spectroscopy U(ppm) x    

Potassium gamma ray spectroscopy K(%)   x  
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Figure 1. Physical properties measured within the depth interval (905- 1493m)  

in borehole W1. Symbols as in Table 1. Log: decimal logarithm. 
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Figure 2. Physical properties measured within the depth interval (1149 -1387m)  

in borehole W2. Symbols as in Table 1. Log: decimal logarithm. 

 

Figure 3. Physical properties measured within the depth interval (2579-2716m)  

in borehole W3. Symbols as in Table 1. 
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Figure 4. Physical properties measured within the depth interval (3497-4801m)  

in borehole W4. Symbols as in Table 1. Log: decimal logarithm. 

As in our previous works (Gaci et al., 2010; Gaci and Zaourar, 2010, 2011a), 

well logs are considered as paths of mBm processes. A local regularity profile is 

computed for each log using the algorithm presented above. The regularity 

profiles obtained from the analyzed logs corresponding to wells W1, W2, W3 and 

W4 are illustrated, respectively, in Figures 5, 6, 7 and 8. For the needs of a 

lithological segmentation, the geological discontinuities crossed by the studied 

wells are reported on the derived regularity logs. The boundaries of the main 

layers are represented by red dashed lines, while limestone, sandstone and shale 

beds are shown, respectively, in green, yellow and black dashed lines. 

The investigation of the results obtained from different datasets reveals a clear 

correlation of lithology with some regularity profiles, mainly those derived from 

Vp, Vs, rhob and nphi logs which measure the liquid-filled porosity. However, 

the regularity profiles derived from the other logs, specifically GR, LLD, AT20, 

AT90, PEF, Th, U and K logs, do not allow to recognize the different geological 

discontinuities on all the datasets. This may be explained by the weak 
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dependence of these logs on the porosity. These findings are in agreement with 

the results of our previous work (Gaci et al., 2010), performed on sonic logs 

recorded in the KTB boreholes, showing a good match between local extrema 

values of regularity profiles and fluid-filled fractures zones characterized by high 

porosity values. 

 

Figure 5. Regularity profiles obtained from the physical measurements of Figure 1 

(Well W1). Dashed lines: layer boundaries (in red), limestone beds (in green),  

sandstone beds (in yellow), and shale beds (in black). 
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Figure 6. Regularity profiles obtained from the physical measurements of Figure 2 

(Well W2). Dashed lines: layer boundaries (in red), limestone beds (in green),  

sandstone beds (in yellow), and shale beds (in black). 

 

Figure 7. Regularity profiles obtained from the physical measurements of  

Figure 3 (Well W3). Dashed lines: layer boundaries (in red), sandstone  

beds (in yellow), and shale beds (in black). 
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Figure 8. Regularity profiles obtained from the physical measurements of  

Figure 4 (Well W4). Dashed lines: layer boundaries (in red), sandstone beds  

(in yellow), and shale beds (in black). 

It can be noted that on the regularity profiles derived from the 

„‟porosity-dependent‟‟ logs, almost all the lithological discontinuities, which are 

either layer boundaries or thin rock beds occurred within the studied depth 

intervals, are marked by jumps in H value. However, some geological interfaces 

between layers are not noticeably identified on the regularity logs, as is the case 

for the interface L3-L4 (Figure 5), sandstone-shale (Figures 6-7). This statement 

is explained by the fact that these adjacent units present a similar lithology, thus 

do not exhibit a distinct lithological limit between them. In addition, an 

observation deserves to be noted is that some rock beds are not clearly detected 

on the regularity curves due to their small thicknesses. A rock bed becomes easier 

to identify as its thickness increases, and the smallest bed thickness that can be 

identified on a regularity log is about 1m. 
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In order to identify a relationship between a lithology and a regularity degree, 

H-values means are calculated for all the analyzed logs over depth intervals of the 

identified geological units crossed by the wells (Table 2). 

Table 2. Mean Hölder exponent values for the analyzed logs over the different  

depth intervals. 

Log/Well 
W1 W2 W3 W4 

L1 (Sh) L2 (Sd/ Sh) L3 (Sd) L4 (Sh) (Sd) (Sh) (Sd) (Sh) (Sh) 

Vp 0.34 0.26 0.27 0.14 0.31 0.19 - - 0.27 

Vs - - - - 0.29 0.18 - - 0.29 

Rhob 0.26 0.23 0.21 0.16 - - 0.29 0.32 - 

nphi 0.25 0.22 0.30 0.15 - - - - - 

GR 0.28 0.25 0.26 0.13 0.26 0.20 0.34 0.40 0.20 

PEF 0.22 0.20 0.20 0.14 - - 0.30 0.26 - 

LLD 0.60 0.63 0.49 0.13 - - - - - 

AT20 - - - - 0.90 0.62 - - 0.32 

AT90 - - - - 0.63 0.44 - - 0.34 

Th 0.30 0.26 0.25 0.15 - - 0.37 0.34 - 

U 0.40 0.38 0.38 0.16 - - - - - 

K - - - - - - 0.32 0.36 - 

Sd: sandstone; Sh: shale. 

For a given well, the H-values mean varies depending on the specified layer 

and the type of the log. Moreover, for the same log and lithology, this value is not 

steady as is the case of the layers L1 and L4 (well W1). Though the latter are 

mainly composed of shale, they correspond to different H-value means for all the 

investigated logs. These findings corroborate the results of our earlier researches 

(Gaci et al., 2010; Gaci and Zaourar, 2010, 2011a). According to the latter, the 

lithological layers intersected by the KTB wells, specifically amphibolite, gneiss 

and variegated units, exhibit very close regularity degrees, and a given lithology 

cannot be described by a unique H value. 

Next, for each well, a correlation analysis is performed on the estimated 
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regularity profiles. Correlation coefficients between the regularity profiles 

derived from the investigated well logs are given in tables 3, 4, 5 and 6 

corresponding, respectively, to wells W1, W2, W3 and W 4. The tables reveal a 

strong correlation between all the computed regularity profiles (except between 

HVp-HAT90, HGR-HAT20 and HGR-HAT90 for well W4), even if the borehole 

measurements are weakly correlated. 

Table 3. Correlation coefficients between the regularity profiles derived  

from the analyzed well logs (Well W1). 

 HVp Hrhob Hnphi HGR HPEF HLLD HTh HU 

HVp 1.000 0.681 0.728 0.839 0.801 0.788 0.917 0.635 

Hrhob  1.000 0.416 0.639 0.743 0.738 0.715 0.468 

Hnphi   1.000 0.762 0.618 0.505 0.668 0.613 

HGR    1.000 0.751 0.760 0.911 0.874 

HPEF     1.000 0.754 0.803 0.527 

HLLD      1.000 0.833 0.668 

HTh       1.000 0.758 

HU        1.000 

Table 4. Correlation coefficients between the regularity profiles derived  

from the analyzed well logs (Well W2). 

 HVp HVs HGR HAT20 HAT90 

HVp 1.000 0.955 0.793 0.632 0.747 

HVs  1.000 0.675 0.470 0.636 

HGR   1.000 0.779 0.706 

HAT20    1.000 0.847 

HAT90     1.000 
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Table 5. Correlation coefficients between the regularity profiles derived  

from the analyzed well logs (Well W3). 

 Hrhob HPEF HGR HTh HK 

Hrhob 1.000 0.638 0.549 0.557 0.567 

HPEF  1.000 0.511 0.827 0.951 

HGR   1.000 0.551 0.496 

HTh    1.000 0.762 

HK     1.000 

Table 6. Correlation coefficients between the regularity profiles derived  

from the analyzed well logs (Well W4). 

 HVp HVs HGR HAT20 HAT90 

HVp 1.000 0.798 0.756 0.414 0.288 

HVs  1.000 0.680 0.537 0.475 

HGR   1.000 0.362 0.080 

HAT20    1.000 0.907 

HAT90     1.000 

As mentioned earlier, a clear correlation is shown between the regularity 

profiles derived from the recorded well logs even if the latter are weakly 

correlated. The regularity is therefore a robust property which can be used 

successfully to characterize lithological heterogeneities of layers. 

In the following, we aim at checking for the existence of a relation between H 

exponents and the recorded physical parameter (P) of the different logs recorded 

in the considered boreholes. The method consists of representing a scatter plot of 

data in “the phase plane”, i.e. “Hölder exponent- physical parameter‟‟ plane 

(Barrière, 2007; Echelard et al., 2010). Each depth z of the log, with a physical 

parameter value P(z) and its estimated regularity exponent H(z) is represented by 

a point with coordinates (P(z), H(z)) in this plane. To enhance the analysis of the 

scatter diagram, the density of the points is plotted instead. By doing so, different 

scatter plots are represented in the “regularity-physical parameter‟‟ plane for each 
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log. The plots related to wells W1, W2, W3 and W4 are exposed, respectively, in 

Figures 9, 10, 11 and 12. 

 

Figure 9. Density of the scatter plots in the ‘’Hölder exponent- physical  

parameter’’ plane obtained from the borehole W1 logs. 
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Figure 10. Density of the scatter plots in the ‘’Hölder exponent- physical  

parameter’’ plane obtained from the borehole W2 logs. 

 

Figure 11. Density of the scatter plots in the ‘’Hölder exponent- physical  

parameter’’ plane obtained from the borehole W3 logs. 
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Figure 12. Density of the scatter plots in the ‘’Hölder exponent- physical  

parameter’’ plane obtained from the borehole W4 logs. 

All these diagrams reveal an irregular distribution of the points, and on each 

diagram very scattered regularity exponents correspond to the same value of the 

considered physical parameter. The scatter plots do not then allow to infer a clear 

function between P(z) and H(z), and the investigated logs cannot be described by 

self-regulated multifractional processes (SRMPs). 

Considering the aforementioned results, a correlation analysis is carried out on 

P(z) and H(z) logs so as to determine the relation between the physical parameter 

and its estimated regularity (Table 7). The correlation coefficients obtained from 

the analyzed datasets show a weak correlation between logs and their computed 

regularity, except for U log (well W1), AT20 and AT90 logs (well W2), GR log 

(wells W2-W3), Vs log (well W4). To notice also that for some logs (Vp, Vs, GR, 

PEF, and Th), the correlation coefficients take positive and negative values. 

These observations should be checked on a large number of datasets in order to 

confirm the weak correlation for all the types of logs. 
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Table 7. Correlation coefficients between the logs and their estimated  

regularity profiles for all the datasets. 

Well/ Log Vp Vs rhob nphi GR PEF LLD AT20 AT90 Th U K 

W1 -0.13 - 0.33 -0.31 -0.42 -0.46 -0.33 - - 0.38 -0.80 - 

W2 0.08 0.21 - - -0.57 - - -0.68 -0.60 - - - 

W3 - - 0.10 - -0.53 0.05 - - - -0.27 - -0.11 

W4 -0.32 -0.55 - - 0.04 - - -0.40 -0.48 - -  

6.6  Conclusion 

This paper presents the results of a regularity analysis carried out on different 

well logs recorded in four Algerian exploration boreholes drilled in different 

geological contexts. The investigated datasets contain very diversified logs, and 

are considered here as paths of multifractional Brownian motion (mBm). 

The regularity profiles independently derived from the logs, particularly those 

obtained from the “porosity-dependent‟‟ logs (sonic, density and neutron), are 

significantly correlated with the lithology; the lithological discontinuities 

correspond to abrupt changes in the Hölder exponent value. Moreover, for a 

given well, the derived regularity curves are strongly correlated. 

The obtained results show that no relationship can be drawn between the 

measured physical parameter and its estimated regularity exponent. Therefore, 

the logs cannot be considered as realizations of a self-regulated multifractional 

process (SRMP). Besides, low correlation coefficients are generally observed 

between the physical measurements and the Hölder exponents for the available 

logs. In our upcoming researches, we will be trying to accurately quantify the 

regularity exponent and the relationship between the log and its estimated 

regularity profile. In addition, the regularity analysis will be extended to a very 

large dataset composed of very diversified well logs. 
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