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In this chapter the theory of linear perturbations in the universe are studied. 

9.1  Differential Equations of Linear Perturbation in the 

Universe 

A covariant, linear, cosmological perturbation theory is given. The metric is 

the pseudo-Euclidean geometry. The energy-momentum tensor is stated and the 

basic equations for the propagation of the perturbations are presented. The 

perturbed equations for a homogeneous isotropic universe are stated. All the 

results of this chapter can be found in          . 

We use the pseudo-Euclidean geometry (1.5), the theory of gravitation in flat 

space-time (1.23), the equations of motion (1.29) and the conservation of the 

whole energy-momentum (1.25). The matter tensor is given by (1.28). 

The gravitational field satisfies  

              (9.1a) 

with the condition 

             . (9.1b) 

It follows by linear perturbation 

              (9.2a) 

with the result 

                    (9.2b) 

In addition, we put 

                        . (9.3) 

The arising equations of perturbations are applied to cosmological models 

with 
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as considered in chapter VII. 

Let               be the perturbed velocity. Put the perturbed potentials 

         ,    
 

 
                (i=1,2,3). (9.4) 

Then, the cosmological model implies after longer calculations the 

differential equations for the perturbed field 
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The perturbed equations of motion are: 
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      (9.6) 

Furthermore, we have an equation of state for the perturbed pressure. i.e., 
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         . (9.7) 

The relations (9.5), (9.6) and (9.7) are ten equations for the  ten unknown 

functions       (i=1,2,3),       (i=1,2,3),    and    These equations describe 

small perturbations in a homogeneous, isotropic cosmological model. 

In the following let us assume that the equation of state has the form 

      
    (9.8) 

with constant velocity sound         It follows as  consequence of the 

perturbed field equation (9.5) and the perturbed equations of motion (9.6) a 

conservation law of the perturbed energy-momentum tensor (see             

9.2  Spherically Symmetric Perturbations 

We will now study spherically symmetric solutions of the perturbed 

equations (9.5), (9.6) and (9.8). The study of these results are contained in the 

following sub-chapters and are found in the articles           and          . 

Let   denote the Euclidean distance from the centre of the spherical 

symmetry and let   be the wave number. We make the ansatz 
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We get by substituting the relations (9.9) into the equations (9.5) and (9.6) 
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The three perturbed field equations (9.10) and the two perturbed equations of 

motion (9.11) are five linear homogeneous differential equations for the five 

unknown functions                depending on   and on a parameter  . Knowing a 

solution of (9.10) and (9.11) for   on a fixed interval   we can get a more 

general solution by virtue of the linearity of the equations. Let      be a 

function of   on the interval   and let    be a fixed distance from the centre then 

we get the more general solutions  
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Here, the integration is taken over the interval    

In the following we will only consider cosmological models with    , i.e.  

      (9.13) 
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and the case  

   
     (9.14) 

We put 

   
   

   
. (9.15) 

9.3  Beginning of the Universe 

The beginning of the universe in flat space-time theory of gravitation is non-

singular. All the energy is in form of gravitational energy and radiation and dust 

arise out of gravitational energy whereas the whole energy is conserved. Put for 
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Then, we have by (7.31) and (7.14b) 
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In the beginning of the universe the density of matter is negligible and only 

the density of radiation and its pressure dominate. 

We make the ansatz 
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We get by the substitution of the relations (9.16), (9.17) and (9.18) into the 

equations (9.10) and (9.11) and by the use of (9.13), (9.14) and (9.15) five 

homogeneous linear equations to determine   such that not all of the five 

coefficients                vanish. There exist four non-negative values of  : 

            (9.19) 

In the following only the case     is studied implying two arbitrary 

constants    and   . We get 
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Furthermore, it follows 
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 (9.20b) 

All the other coefficients can be recursively calculated. Hence, we get for 

    the solution (9.18) depending on two arbitrary parameters. Then, the 

relations (9.12) give the perturbed solutions in the beginning of the universe. 

Let us now discuss the received perturbed solution. Assuming        on the 

interval   we have to put      to get collapsing spherically symmetric 

perturbations in the neighbourhood of the centre as   increases from      This 

result follows by the use of (9.20a), (9.18) and (9.12). Furthermore, we get that 

the density of the spherically symmetric perturbation is positive if the wave 

numbers fulfil the condition 
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Hence, we have to the lowest order of the density fluctuations as      
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Therefore, for the case     small spherically symmetric non-homogeneities 

in the uniform distribution of matter can exist in the beginning of the universe. 

The cases         give only one-parametric solutions with 
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for     . 

Therefore, small non-homogeneities can arise in the homogeneous 

distribution of matter in the beginning. By virtue of the small horizons there are 

many unconnected regions in the universe. The non-homogeneities are 

unconnected and arise independently from one another. Therefore, they are 

uniformly distributed in space in the beginning of the universe. This may 

explain the presently observed homogeneity of matter on large scales in the 

universe. The horizons increase in the course of time and larger regions of the 

universe become connected. The non-homogeneities are then connected and 

influence one another by gravitation. 

9.4  Matter Dominated Universe 

In this sub-chapter the universe is considered where matter dominates 

radiation. Put  
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with 
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During the studied time epoch it holds by (7.46) and (7.14b) 

       ,                                (9.25) 

We make the ansatz 
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It follows in analogy to the previous sub-chapter 
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which imply non-vanishing solutions. Furthermore, a pair of complex numbers 

is received to get non-vanishing solutions. The case  

     (9.28) 

is further studied. It follows with an arbitrary parameter   : 

     
  

 
  ,         ,      
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  . (9.29a) 

The coefficients of higher order can again be recursively calculated. It can be 

proved that the series (9.26) converge absolutely and uniformly. Hence, the 

sums and the integrals of (9.12) can be exchanged. Put          with    

sufficiently small, i.e. large scale non-homogeneities we have to the lowest 

order 

                   
             

       

 
  . (9.29b) 

This solution is non-singular for     whereas in           spherically 

symmetric perturbations are considered by the use of general relativity yielding 

a singularity at      Hence, the density contrast in the matter dominated 

universe increases faster than by the use of general relativity (see e.g.          
        ). In these articles it is proved that the density contrast increases at most 

linearly with the function     . 

Let    be the time of the decoupling of matter and radiation. Then, relation 

(9.29b) yields 

                               
    

     
 

   
. (9.30) 

It holds for adiabatic perturbations 

                           . (9.31) 

Here,    denotes the temperature anisotropy of CMBR. The decoupling 

occurs at a redshift    (see e.g.,        ) 

                    (9.32) 

The analysis of COBE-data show that the CMBR has an anisotropy of 

              (9.33) 
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on large scales           Hence, relation (9.30) gives by the use of (9.31), (9.32) 

and (9.33) 

                                  
   

. (9.34) 

The time    where the density contrast is given by  

                     

implies a redshift    with 

                    
 

    
   

      (9.35) 

Summarizing, large scale structures can arise in the matter dominated 

universe in accordance with the observed CMBR anisotropy. It is worth to 

mention that for a density contrast greater than one non-linear perturbations 

must be considered.  

All these results with detailed calculations are given in the articles of 
          and               where also further remarks can be found. 

Spherically symmetric perturbations in a universe which contains an 

additional field as source are studied in the article          . 

In the paper          higher order approximations of density perturbations 

are given as well in the beginning as in the matter dominated universe. The 

results are based on numerical computations. Numerical computations of 

spherically symmetric density perturbations in a universe with an additional 

field are stated in the paper         . 

For the study of the early universe and structure formation by the use of 

Einstein’s theory, e.g., the books of                   and          shall be 

considered. 

It should also be remarked that the theory of Einstein implies a too small 

density contrast which yields difficulties to explain the large scale structures in 

the universe as galaxies, etc. 
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