

Chapter 8

Extracting the Component’s Contours

for Calculating Number of Objects

http://www.sciencepublishinggroup.com 125

On successful completion of this course, students will be able to:

 Explain how to extract component’s contours.

 Develop a program to count an object in image.

Introduction

Image processing for obtaining object‘s information in an image is important

part in digital era. Important images generally contain representation of specific

objects. In order to perform a content-based analysis of an image, it is necessary

to extract meaningful features from the collection of pixels and contours that

constitute the image. Contours are fundamental image elements that define an

image’s content. In this paper, we propose a method for calculating number of

objects using computer vision based on contours and shape descriptor of image.

Introduction of Contours

Images generally contain representation of objects. One of the goals of image

analysis is to identify and extract those objects. In object detection/recognition

applications, the first step is to produce a binary image showing where certain

objects of interest could be located. The next step is to then extract the objects

which are contain in this collection of 1s and 0s. More specifically, we will

extract the connected components, that is, shapes made of a set of connected

pixels in a binary image. In this paper, we propose a method for calculating

objects in an image using contour and shape descriptor. The implementation of

this method is such as to get information about traffic density, how many cars in

a street.

The contours are extracted by a simple algorithm that consists of

systematically scanning the image until a component is hit. From this starting

point of the component, its contour is followed, marking the pixels on its border.

When the contour is completed, the scanning resumes at the last position until a

new component is found. The identified connected components can then be

individually analyzed. Implementation of image segmentation for extracting

foreground object can be use GraphCut algorithm based on mathematical

morphology [3]. GrabCut is computationally more expensive than watershed,

but it generally produces a more accurate result. It is the best algorithm to use

Modern Robotics with OpenCV

126 http://www.sciencepublishinggroup.com

when one wants to extract a foreground object in a still image. So for this

research, we propose simple mechanism for calculating the objects in an image,

by processing the contour and the shape descriptor of an image using connected

component.

Shape descriptors are important tools in content-based image retrieval

systems, which allow searching and browsing images in a database with respect

to the shape information. The shape description methods can be divided into

three main categories; contour based, image based and skeleton based

descriptors [5]. A Connected component often corresponds to the image of

some object in a pictured scene. To identify this object, or to compare it with

other image elements, it can be useful to perform some measurements on the

component in order to extract some of its characteristics. Many OpenCV
functions are available when it comes to shape descriptor and offers a simple

function which extracts the contours of the connected components of an image

using cv::findContours function.

Cv::findCounteours (image,

CV_RETR_EXTERNAL, //retrieve the external contours

CV_CHAIN_APROX_NONE); // all pixels of each contours.

For example, if some prior knowledge is available about the expected size of

objects of interest, it becomes possible to eliminate some of the components.

Let’s then use a minimum and a maximum value for the perimeter of the

components by iterating over the vector of contours and eliminating the

eliminating the invalid components. The implementation for finding contours

shown in the program below:

// Eliminate too short or too long contours

intcmin=100;int cmax=1000 //min and max contour length

std::vector<std::vector<cv::Point>>::

const_iteratoritc=contours.begin();

while (itc !=contours.end()) {

if (itc->size()<cmin ||itc->size() >cmax)

itc=contour//Eliminate.erase(itc);

else

++itc;

}

Chapter 8 Extracting the Component’s Contours for Calculating Number of Objects

http://www.sciencepublishinggroup.com 127

Counting Objects

We using singe images for the experiment, and convert it first to binary, then

we extract the contour, shape descriptor, counting and displaying number of

objects. The algorithm for extract the contours shown below:

Algorithm 8.1. Extracting the contour and counting the object:

Begin

Counter=0

reading image and convert to binary image

Extract contours

Output the vector of contours

Counting the objects

Couter+=1

Displaying the number of object

End

The diagram block of our method shown in figure 8.1:

Figure 8.1 Diagram block of the system for calculating number of objects.

We test an example image with 4 animal and size 400x600 pixel as shown in

figure 8.2:

Modern Robotics with OpenCV

128 http://www.sciencepublishinggroup.com

Figure 8.2 Testing image.

Then the result of binary image from fig. 8.2 shown in figure 8.3:

Figure 8.3 Binary image.

After that, we find contours of image as shown in figure 8.4:

Chapter 8 Extracting the Component’s Contours for Calculating Number of Objects

http://www.sciencepublishinggroup.com 129

Figure 8.4 Contour of image obtained.

After that, we got total number of object with its shape descriptors as shown

in figure 8.5, using function:

CvPoint pt1;

pt1.x=100;pt1.y=60;

cvInitFont(&font, CV_FONT_HERSHEY_COMPLEX, 0.5, 0.5,

0.0, 1, CV_AA);

cvPutText(img, "TOTAL :", varCount, &font ,

CV_RGB(0,0,255));

Modern Robotics with OpenCV

130 http://www.sciencepublishinggroup.com

Figure 8.5 Number of objects obtained with processing time less than 1 second.

References

[1] Robert Laganière, OpenCV 2 Computer Vision Application Programming

Cookbook, Apress Publisher, 2011.

[2] R.C. Gonzalez, Digital Image Processing (3
rd

 ed.), Addison Wesley, 2007.

[3] Rother, A Blake, GrabCut: Interactive Foreground Extraction using Iterated Graph

Cuts, ACM Transaction on Graphics, vol. 23 no. 3, 2004.

[4] R. Szeliski, Computer Vision, Algorithms and Applications, Springer Publisher,

2011.

[5] Latecki, L. J., Lakamper, R., Shape Similarity Measure Based on Correspondence

of Visual Parts.IEEE Transaction. PAMI, 22, 10, pp.1185-1190, 2000.

	wbudiharto@binus.edu-9.11 133
	wbudiharto@binus.edu-9.11 134
	wbudiharto@binus.edu-9.11 135
	wbudiharto@binus.edu-9.11 136
	wbudiharto@binus.edu-9.11 137
	wbudiharto@binus.edu-9.11 138
	wbudiharto@binus.edu-9.11 139
	wbudiharto@binus.edu-9.11 140

