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Section 1.1
Heston Model: Option Pricing Formulae, Filtering

and Calibration Problems

[Description] We consider stock prices whose dynamics is described by
the Heston model, that is by a system of two stochastic differential
equations with a suitable initial condition. We estimate the parameters of
the Heston model and one component of the initial condition, that is the
initial stochastic variance, from the knowledge of the stock and option
prices observed at discrete times. The method proposed to solve this
problem is based on a filtering technique to construct a likelihood
function and on the maximization of the likelihood function obtained. The
estimated parameters and initial value component are characterized as
being a maximizer of the likelihood function subject to some constraints.
The solution of the filtering problem, used to construct the likelihood
function, is based on an integral representation of the fundamental
solution of the Fokker-Planck equation associated to the Heston model,
on the use of a wavelet expansion to approximate the integral kernel
appearing in the representation formula of the fundamental solution, on a
simple truncation procedure to exploit the sparsifying properties of the
wavelet expansions and on the use of the Fast Fourier Transform (FFT).

[Paper] Mariani F., Pacelli G., Zirilli F. (2008). Maximum likelihood
estimation of the Heston stochastic volatility model using asset and option
prices: an application of nonlinear filtering theory, Optimization Letters
2, 177-222.

[Website] http://www.econ.univpm.it/pacelli/mariani/finance/w1
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1.1.1 Outline of the Presentation

1. The Heston stochastic volatility model

• The calibration problem

• The estimation and filtering problems

• Some numerical results

2. A stochastic volatility model for the index of the ”long short equity”
hedge funds based on the Heston stochastic volatility model

• The calibration problem

• The estimation and filtering problems

• Some numerical results

3. References

1.1.2 The Calibration Problem for the Heston Stochastic Volatility
Model

We want to estimate the parameters of the Heston stochastic volatility
model (Heston 1993) describing the dynamics of the stock log-returns
starting from price data.

We use as data the observation at discrete times of the stock log-returns
and of the prices of an European call option on the stock.

The solution approach that we propose makes use of:

• nonlinear filtering techniques,

• maximum likelihood method.
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We focus on:

• the formulation of the problem;

• the accuracy of the solution;

• the computational efficiency of the solution method.

The problem considered is realistic and the analysis of time series of
real financial data can be considered. Preliminary results are very
promising.

1.1.3 The Heston Stochastic Volatility Model

Let xt, t > 0, be the stock log-return at time t, vt, t > 0, be the stochastic

variance associated to the stock log-return xt at time t.

We assume that the dynamics of xt, t > 0, and of vt, t > 0, is described
by the Heston model :

dxt =
(
µ− 1

2
vt

)
dt+

√
vt dW

1
t , t > 0,

dvt = γ(θ − vt)dt+ ε
√
vt dW

2
t , t > 0,

where µ, γ, ε, θ are real constants, W 1
t , W

2
t , t > 0, are standard Wiener

processes such that W 1
0 = W 2

0 = 0, dW 1
t , dW 2

t are their stochastic

differentials, < dW 1
t dW

2
t >= ρdt, where < · > denotes the expected

value of ·, and ρ ∈ [−1, 1] is a constant known as correlation parameter.

We complete the Heston stochastic differential equations with the initial
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conditions:

x0 = x̃0,

v0 = ṽ0,

where x̃0 and ṽ0 denote random variables concentrated with probability
one in a point that for simplicity we continue to denote with x̃0 and ṽ0.

Remind that ṽ0 cannot be observed.

The parameters that must be estimated from the data are:

• the Heston model parameters: µ, γ, ε, θ, ρ,

• the initial stochastic variance: ṽ0,

• the risk premium parameter: λ (remind that we consider option
prices as data and that we evaluate the option prices under the risk
neutral measure, that is the probability measure associated to the
Heston model where γ and θ are substituted respectively with
γ∗ = γ + λ and θ∗ = γθ/(γ + λ)),

that is, the following vector: Θ = (µ, γ, ε, θ, ρ, ṽ0, λ)T , where T denotes
the transpose operator. Elementary considerations suggest that the
following set of constraints must be satisfied by the vector Θ:

M = {Θ = (µ, γ, ε, θ, ρ, ṽ0, λ)T ∈ R7|γ ≥ 0, ε ≥ 0, θ ≥ 0,

2γθ

ε2
≥ 1, 1 ≥ ρ ≥ −1, ṽ0 ≥ 0}.

1.1.4 The Calibration Problem

DATA
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• the observation times 0 = t0 < t1 < t2 < . . . < tn < +∞;

• the stock log-return x̃i, i = 0, 1, 2, . . . , n;

• the option price C̃i, i = 0, 1, 2, . . . , n.

We assume:

1. x̃i = xti , i = 0, 1, ..., n,;

2. C̃i = C(x̃i, ṽi, ti;E, T ) + ui, i = 0, 1, ..., n,

where

1. C(x, v, t;E, T ) is the Heston price of a European vanilla call option
having as underlying the stock whose log-return is described by the
Heston model;

2. E and T denote, respectively, the strike price and the maturity time
of the vanilla call option. Moreover we assume T > tn;

3. ṽi denotes the stochastic variance at time t = ti. Remind that ṽi
cannot be observed;

4. ui is sampled from a Gaussian random variable with mean zero and
known variance φi.

We want to use the data available to solve the following problems:

1. Estimation Problem: find an estimate of the vector
Θ = (µ, γ, ε, θ, ρ, ṽ0, λ)T .

2. Filtering Problem (Forecasting Problem): given the values of the
model parameters Θ = (µ, γ, ε, θ, ρ, ṽ0, λ)T find the stochastic
variance and forecast the stock log-return and the stochastic
variance.
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That is the calibration problem consists in estimating the vector Θ from
the data given by the observations at time t = ti of the stock log-return x̃i
and of the option price C̃i, for i = 0, 1, . . . , n, i.e. consists in estimating
the value of the vector Θ that makes most likely the available observations
Ft = {(x̃i, C̃i) : ti ≤ t}, t > 0.

As a byproduct of the solution of this calibration problem we obtain a
technique to track the unknown stochastic variance vt, t > 0, i.e. once the
vector Θ is known, we can estimate the stochastic variance vt, t > 0, as
mean value of the random variable vt with respect to the probability
density function conditioned to the observations associated to the Heston
model corresponding to the vector Θ. The filtering problem that we
consider consists in finding the probability density function conditioned to
the observations associated to the Heston model (see Mariani et al. 2008).

Moreover using the probability density function found the stock
log-return and the stochastic variance can be forecasted for t > tn.

1.1.5 Solution of the Calibration Problem

Let

1. p(x, v, t|Ft,Θ) be the joint probability density function of the
random variables xt and vt at time t > 0 conditioned to the
observations Ft;

2. pi(x, v, t|Θ) = p(x, v, t|Fti ,Θ), be the joint probability density
function of the random variables xt, vt, conditioned to the
observations made up to time t = ti, ti < t ≤ ti+1, i = 0, 1, . . . , n.
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In order to measure the likelihood of the vector Θ we introduce a
(log-)likelihood function:

F (Θ)=
n−1∑
i=0

log
[∫ +∞

0

pi(x̃i+1, v, ti+1|Θ)π1(x̃i+1, v, ti+1|Θ)dv
]

+ log
[∫ +∞

0

p0(x̃0, v, t0|Θ)π1(x̃0, v, t0)
]
,Θ ∈M,

where

π1(x̃i, v, ti|Θ)=
1√

2πφi
exp
(
− 1

2φi
(C̃i−C (̃xi,v,ti;E,T,Θ))2

)
,

(x̃i, v) ∈ (−∞,+∞)×(0,+∞), i = 0, 1, . . . , n.

The solution of the estimation problem is given by the vector Θ that
solves the following optimization problem:

max
Θ∈M

F (Θ). (1)

This problem is called maximum likelihood problem and is an

optimization problem with nonlinear objective function and nonlinear

constraints. In order to solve problem (1), we must evaluate the

(log-) likelihood function F (Θ), i.e. we must find the joint probability

density functions: pi(x, v, t|Θ), (x, v) ∈ (−∞,+∞) × (0,+∞),

ti < t ≤ ti+1, Θ ∈M, for i = 0, 1, ..., n.

The probability density functions pi, i = 0, 1, ..., n − 1, are solutions of
the following Fokker-Planck equation associated to the Heston model: for
i = 0, 1, ..., n− 1,
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

∂pi
∂t

= 1
2

[
∂2(vpi)
∂x2

+ ∂2(ε2vpi)
∂v2

+ 2∂
2(ερvpi)
∂x∂v

]
−∂((µ− 1

2
v)pi)

∂x
− ∂(γ(θ−v)pi)

∂v
,

(x, v) ∈ (−∞,+∞)× (0,+∞), ti < t ≤ ti+1,

pi(x, v, ti|Θ) = fi(x, v; Θ), (x, v) ∈ (−∞,+∞)× (0,+∞),

where

f0(x, v; Θ) = δ(x− x̃0)δ(v − ṽ0), (x, v) ∈ (−∞,+∞)× (0,+∞),

fi(x, v; Θ) =
δ(x− x̃i)pi−1(x, v, ti|Θ)π1(x, v, ti|Θ)∫ +∞
0

pi−1(x̃i, v′, ti|Θ)π1(x̃i, v′, ti|Θ)dv′
,

(x, v) ∈ (−∞,+∞)× (0,+∞), i = 1, 2, ..., n.

Remark

The probability density functions pi, i = 0, 1, ..., n − 1, solutions of the
Fokker-Planck equation can be obtained as an integral with respect to the
state variables of the product of the fundamental solution of the Fokker-
Planck equation associated to the Heston model with the initial condition.

1.1.6 The Filtering Problem

Let us assume that the vector Θ and the filtration Ft = {(x̃i, C̃i) : ti ≤ t}

are given.
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Chapter 1. Stochastic Volatility Models

From the knowledge of the joint probability density function

p(x, v, t|Ft,Θ), (x, v) ∈ (−∞,+∞) × (0,+∞), t ≥ 0, we can forecast

the values of the stock log-return xt, t > 0, t 6= ti, i = 1, 2, . . . , n, and of

the stochastic variance vt, t > 0, using respectively the mean values x̂t|Θ,

v̂t|Θ, t > 0, conditioned to the observations of the random variables xt, vt,

t > 0, i.e. the forecasted values x̂t|Θ, v̂t|Θ of xt, vt, t > 0, are given by:

x̂t|Θ = E(xt|Ft,Θ) =

∫ +∞

0

dv

∫ +∞

−∞
dxxp(x, v, t|Ft,Θ), t > 0,

v̂t|Θ = E(vt|Ft,Θ) =

∫ +∞

0

dv

∫ +∞

−∞
dxv p(x, v, t|Ft,Θ), t > 0.

A 1D integral representation formula of the option price.

Let r be the risk free interest rate, then we find that the price of a call
option with strike price E and maturity time T is given by the following
1D Fourier integral (see Fatone et al. 2008 and Mariani et al. 2008):

C(x′, v′, t′;E, T,Θ) =
e−r(T−t

′)

2π

∫ +∞

−∞

erT (2−ik)e(ik−1) logE

2 + 3ik − k2

e−
2γ∗θ∗

ε2

(
log β∗

2ζ∗+(ξ∗+ζ∗)(T−t′)
)
e
− 2v′α∗

ε2χ
+M̃∗ṽ∗+x′(2−ik)

dk,

(x′, v′) ∈ (−∞,+∞)× (0,+∞), t′ > 0,
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where

γ∗ = γ + λ, θ∗ = γθ/(γ + λ),

ξ∗ = ξ∗(k) = −1

2
(ερik − 2ρε+ γ + λ),

ζ∗ = ζ∗(k) =
1

2
(4ξ∗

2

(k) + ε2(k2 + 3ik − 2))1/2

and α∗ = α∗(k, τ), β∗ = β∗(k, τ), χ∗(k, τ) are given by:

α∗ = α∗(k, τ) = ξ∗(k) + ζ∗(k) + (−ξ∗(k) + ζ∗(k))e−2ζ∗(k)τ ,

β∗ = β∗(k, τ) = −ξ∗(k) + ζ∗(k) + (ξ∗(k) + ζ∗(k))e−2ζ∗(k)τ ,

χ∗ = χ∗(k, τ) = 1− e−2ζ∗(k)τ ,

M̃∗(k, τ) = 2β∗(k, τ)/(ε2χ∗(k, τ)),

ṽ = 4ζ∗
2

(k)e−2ζ∗(k)τv′/β∗
2

(k, τ), v′ ∈ (0,+∞).

Remark

This 1D integral can be computed easily by numerical quadrature. Note
that in comparison to previous work of the same authors this new 1D
integral representation formula simplifies substantially the numerical
evaluation of the initial conditions of the filtering problem and as a
consequence the evaluation of the (log-)likelihood function (see Fatone et
al. 2008 and Mariani et al. 2008).

The iterative algorithm used in the maximum likelihood problem

The technique used to solve the maximum likelihood problem is based
on a variable metric steepes ascent method (see Herzel et al. 1991).
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Beginning from an initial guess Θ0, we update at every iteration the
current approximation of the solution of the optimization problem with a
step in the direction of the gradient of the (log-)likelihood function
computed in a suitable metric.

Note that Θ0 ∈M is built with some elementary ad hoc steps.

Let us fix a tolerance value δ > 0 and a maximum number of iterations
iter > 0, we denote with Θ∗ the maximizer of the (log-)likelihood
function.

1. Set k = 0 and initialize Θ = Θ̃0;

2. Evaluate F (Θk), if k > 0 and if |F (Θk)−F (Θk−1)| < δ, where | · |

denotes the absolute value of ·, go to item 7;

3. Evaluate the gradient of the (log-)likelihood function:

∇F (Θk) =
(
∂F
∂µ
, ∂F
∂γ
, ∂F
∂ε
, ∂F
∂θ
, ∂F
∂ρ
, ∂F
∂ṽ0
, ∂F
∂λ

)T
(Θk), if ‖∇F (Θk)‖ < δ

where || · || denotes the Euclidean norm of the vector ·, go to item 7;

4. Perform the steepest ascent step, evaluating Θk+1 = Θk+ηk∇F (Θk),

where ηk is a positive real number representing the length of the step

done in the direction of ∇F (Θk). The choice of ηk involves the use

of “variable metrics”;

5. If ||Θk+1 −Θk|| < δ, go to item 7;

6. Set k = k + 1, if k < iter go to item 2;

7. Set Θ∗ = Θk and stop.
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1.1.7 Some Numerical Results

Example 1: Calibration of the Heston model using synthetic data

We consider a “year” made of 252.5 trading days, a temporal interval
of 36 consecutive trading days and n = 9 observation times in this time
period.

We choose t0 = 0, and ti = ti−1 + ∆, i = 1, 2, ..., 9, where ∆ = 4
252.5

.

The vector Θ used to generate one trajectory of the Heston model is:

Θ = (µ, γ, ε, θ, ρ, ṽ0, λ0)T = Θ̃

= (0.026, 5.94, 0.306, 0.01159,−0.576, 0.5, 0)T .

We have F (Θ̃) ∼= 43.15.

Starting from Θ0 = (0.5, 8.22, 0.15, 0.0067,−0.634, 0.3, 0.01) ∈M,

with ‖Θ̃−Θ0‖ ≈ 2.3, to evaluate the function F (Θ) and its gradient using

finite differences we solve eight filtering problems for each choice of Θ in

the optimization procedure.

The synthetic data obtained integrating numerically with Euler method
one trajectory of the Heston model and evaluating the option prices with
the formula (1D integral) shown above are the following:
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i ti(year) x̃i C̃i

0 0 0 0.5099

1 4/252.5 1.2355e-1 0.6410

2 8/252.5 6.8935e-2 0.5804

3 12/252.5 -2.9809e-2 0.4791

4 16/252.5 1.2049e-2 0.5201

5 20/252.5 4.4983e-2 0.5538

6 24/252.5 -7.7662e-4 0.5065

7 28/252.5 -1.3411e-2 0.4936

8 32/252.5 -1.2461e-1 0.3894

9 36/252.5 -7.1041e-2 0.4377

Note that we have chosen φi = 0.0005, i = 0, 1, . . . , n.

To each vector Θk=(Θk
1,Θ

k
2, . . . ,Θ

k
7)T , k = 1, 2, ..., iter, generated by

the optimization procedure there is associated a function p̃(x, v, t|Ft,Θk),

(x, v) ∈ (−∞,+∞)×(0,+∞) t > 0, solution of a corresponding filtering

problem, with initial stochastic variance ṽ0 = Θk
6, risk neutral parameter

λ = Θk
7 and parameter values Θk

j , j = 1, 2, ..., 5.

So that for each vector Θk we can estimate the stock log-returns and

the stochastic variance values using the correspondent probability density

function p̃(x, v, t|Ft,Θk), (x, v) ∈ (−∞,+∞)× (0,+∞), t > 0.

We fix iter = 200 and we use the variable metric steepest ascent method
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with the following stopping criterion:

|F (Θk)− F (Θk−1)| ≤ 5.e− 6, and k > 10.

Note that the maximum likelihood procedure finds as estimate of the

vector Θ a vector Θ∗ = Θ92, such that F (Θ∗) = F (Θ92) > F (Θ̃).

solid line: “true trajectory”, dash-dotted line: “forecasted trajectory”

Figure 1. Tracking of the trajectory and quality of the forecasts when Θ = Θ̃

Example 2: Analysis of S&P500 index

We analyze the historical data of the S&P500 index in the year 2005.
We consider the daily closing values of the S&P500 index and the closing
prices of a European call option on the S&P500 index with maturity date
December 16, 2005 and strike value E = 1200 during the period of about
six months from January 3, 2005 to March 3, 2005.

We choose as time t = 0 the first day January 3, 2005 and we consider 10

observation times, ti = 4 i/253, i = 0, 1, . . . , 9. We apply the procedure
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described with δ = 5.e− 07 and the starting point has been chosen taking

into account the implied volatility of the option, the standard deviation and

the mean value of the historical log-returns data. The calibration procedure

gives the following parameter vector Θ =Θc=(µ, γ, ε, θ, ρ, ṽ0, λ)T

= (0.012, 4.303, 0.114, 0.0067, 0.635, 0.065, 0.00058)T .

solid line: “true trajectory”, dash-dotted line: “forecasted trajectory”

Figure 2. Tracking of the trajectory and quality of the forecasts when Θ = Θ0
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solid line: “true trajectory”, dash-dotted line: “forecasted trajectory”

Figure 3. Tracking of the trajectory and quality of the forecasts when Θ = Θ92 = Θ∗
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solid line: “true trajectory”, dash-dotted line: “forecasted trajectory”

Figure 4. Tracking of the log-returns when Θ = Θc
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solid line: “true trajectory”, dash-dotted line: “forecasted trajectory”

Figure 5. Tracking of the option prices Θ = Θc
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Section 1.2
Multiscale Heston Model: Option Pricing Formulae

and Calibration Problems

[Description] We present an explicitly solvable multiscale stochastic
volatility model that generalizes the Heston model. The model describes
the dynamics of an asset price and of its two stochastic variances using a
system of three Ito stochastic differential equations. The two stochastic
variances vary on two different time scales and can be seen as auxiliary
variables introduced to model the dynamics of the asset price. Under
some assumptions on the correlation structure the transition probability
density function of the stochastic process solution of the model the option
pricing formulae are represented as one dimensional integrals of
explicitly known integrands. In this sense the model is explicitly solvable.
The option pricing formulae obtained are used to study the values of the
model parameters, of the correlation coefficients of the Wiener processes
defining the model and of the initial stochastic variances implied by the
”observed” option prices using both synthetic and real data (S& P 500
index in the year 2005). The real data analysis presented shows that the
multiscale stochastic volatility model can be used to obtain high quality
forecasts of option prices.

[Paper] Fatone L., Mariani F., Recchioni M.C., Zirilli F. (2009). An
explicitly solvable multi-scale stochastic volatility model: option pricing
and calibration problems, Journal of Futures Markets 29(9), 862-893.

[Website] http://www.econ.univpm.it/recchioni/finance/w7
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1.2.1 Outline of the Presentation

• The calibration and filtering problems for a stochastic volatility
model.

• The Heston model.

• The multiscale stochastic volatility model.

• The advantages of using the multiscale stochastic volatility model.

• Transition probability density function of the multiscale stochastic
volatility model.

• Option pricing in the multiscale stochastic volatility model. An
integral representation formula.

• Numerical experiments with synthetic and real data.

• References.

1.2.2 Calibration and Filtering Problems for a Stochastic Volatility
Model

Let us consider a stochastic volatility model characterized by a vector Θ

of parameters (having one or more factors) that describes the dynamics of
the stock log return xt, t > 0.

We want to estimate the parameters Θ of the stochastic volatility model
starting from price data.

We use as data the observation at discrete times of the stock log-returns
and/or of the prices of European vanilla call/put options on the stock. The
approach that we propose makes use of:
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• nonlinear filtering techniques,

• maximum likelihood and mean least squares methods.

The problem considered is realistic and the analysis of time series of
real financial data has been carried out. The results obtained are very
satisfactory (Fatone et al. 2008, 2009).

We want to solve the following problems:

1) Estimation Problem: find an estimate of the vector Θ from the

observations, that is, for example, from the knowledge at time t = ti

(ti < ti+1, tn+1 = +∞) of the stock log-return x̃i and/or of an option

price C̃i, for i = 0, 1, . . . , n. This means find the value of the vector

Θ that makes most likely the available observations Ft = {(x̃i, C̃i) :

ti ≤ t}, t > t0.

2) Filtering Problem (Forecasting Problem): given the values of the
model parameters Θ forecast the stock log-return for t 6= ti,
i = 1, 2, . . . , n and the stochastic variance (or variances) for t > t0,
and in particular for t > tn.

Note that in the solution of these two problems we use the joint
transition probability density function of xt and of the associated
stochastic variances, a formula to price an option under this stochastic
model and the joint probability density function of xt and of the
associated stochastic variances conditioned to the observations.

We make the forecasts of the state variables of the model taking the mean
values of the variables with respect to joint probability density functions
conditioned to the observations.
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1.2.3 Heston Stochastic Volatility Model

Let St, t > 0, and xt, t > 0, be the stock price and the stock log-return

at time t (xt = logSt/S0), vt, t > 0, be the stochastic variance associated

to the stock log-return xt at time t.

One of the most important stochastic volatility model is the Heston
model (Heston 1993) that describes the dynamics of xt, t > 0, and of vt,
t > 0, as follows:

dxt =
(
µ− 1

2
vt

)
dt+

√
vt dW

1
t , t > 0,

dvt = γ(θ − vt)dt+ ε
√
vt dZ

1
t , t > 0,

with initial conditions x0 = x̃0, v0 = ṽ0, where µ, γ, ε, θ are real constants,

W 1
t , Z

1
t , t > 0, are standard Wiener processes such that W 1

0 = Z1
0 = 0,

dW 1
t , dZ1

t are their stochastic differentials, < dW 1
t dZ

1
t >= ρdt, where

< · > denotes the expected value of ·, and ρ ∈ [−1, 1] is a constant known

as correlation coefficient.

1.2.4 Heston Stochastic Volatility Model (More)

dxt =
(
µ− 1

2
vt

)
dt+

√
vt dW

1
t , t > 0,

dvt = γ(θ − vt)dt+ ε
√
vt dZ

1
t , t > 0,

• µ drift

• γ speed of mean reverting process
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• θ long term mean variance

• ε volatility of volatility

This model, thank to the stochastic variance vt, improves the well known
Black Scholes model and captures (to some extent) the volatility structure.
The set of parameters to be estimated (using price data) is given by:

Θ = (µ, γ, ε, θ, ρ, ṽ0, λ)T ,

where ṽ0 is the initial stochastic variance and λ is the risk premium
parameter.

1.2.5 Heston Model Calibration: Numerical Results on Real Data

We analyze the daily closing values of the U.S. S&P 500 index and the
corresponding bid prices of a European call option on the U.S. S&P 500
index with maturity date December 16, 2005 and strike price K = 1200

during the period of about four months going from January 3, 2005 to May
11, 2005. Due to the number of data actually available in 2005 the time
unit is a year made of 253 trading days.

The calibration procedure employed uses filtering and maximum
likelihood and has been introduced in Mariani et al. 2008 and further
developed in Fatone et al. 2008, 2009.

We begin choosing as time t = t0 = 0 the day January 3, 2005 and
we have considered as data of the calibration problem 81 windows of 10
consecutive daily observation times.

The calibration procedure, applied to the eighty-one data windows
considered provides eighty-one estimated parameter vectors. We use the
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parameter vector estimated using the data contained in the j-th window to
forecast the value of the S&P500 index and the bid price of the option the
day next to the last observation time of the j-th window.

j-th window- daily  observations

one day forecast

1.2.6 Heston Model Calibration: Numerical Results on Real Data
(More)

We note that in the eighty-one calibration and forecasting problems
solved the mean relative error made in the forecasts of the next day
S&P500 index value and option bid price are 0.0063 and 0.0785
respectively.

The following figure and digital movie show the one day in the future
forecasted values of the S&P 500 option bid price as function of time. The
blue boxes are the historical values, the green/red stars are the one day in
the future forecasted values.
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Forecasting of option pricesMovie 1

1.2.7 Heston Model: Conclusion

The results obtained using the filtering and maximum likelihood
approach suggested in Mariani et al. 2008 on the Heston stochastic
volatility model are particularly satisfactory when:

1. the observed stock prices present no spikes,

2. the European vanilla option prices used as data refer to at the money
options,

3. the time to maturity of the options considered is not too large.

These conditions are not always satisfied.

Moreover time series analysis of financial data has shown that there exist
financial assets whose prices are affected by volatility of two different time
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scales: a short time scale and a long time scale and that there exist prices,
such as commodity prices, where the spikes are natural.

Can we improve the Heston model to take care of these facts?

1.2.8 The Multiscale Stochastic Volatility Model

dxt = (µ+ a1v1,t + a2v2,t)dt+ b1
√
v1,tdW

1
t + b2

√
v2,tdW

2
t , t > 0,

dv1,t = χ1(θ1 − v1,t)dt+ ε1
√
v1,tdZ

1
t , t > 0,

dv2,t = χ2(θ2 − v2,t)dt+ ε2
√
v2,tdZ

2
t , t > 0,

x0 = x̃0, v1,0 = ṽ1,0, v2,0 = ṽ2,0,

where the quantities ai, bi, χi, εi, θi, i = 1, 2, are real constants and W 1
t ,

W 2
t , Z1

t , Z2
t , t > 0, are standard Wiener processes such that

W 1
0 = W 2

0 = Z1
0 = Z2

0 = 0, dW 1
t , dW 2

t , dZ1
t , dZ2

t , t > 0, are their

stochastic differentials.

Correlation structure of the model:



W 1 Z1 W 2 Z2

W 1 1 ρ1 0 0

Z1 ρ1 1 0 0

W 2 0 0 1 ρ2

Z2 0 0 ρ2 1


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dxt = (µ+ a1v1,t + a2v2,t)dt+ b1
√
v1,tdW

1
t + b2

√
v2,tdW

2
t , t > 0,

dv1,t = χ1(θ1 − v1,t)dt+ ε1
√
v1,tdZ

1
t , t > 0,

dv2,t = χ2(θ2 − v2,t)dt+ ε2
√
v2,tdZ

2
t , t > 0,

x0 = x̃0, v1,0 = ṽ1,0, v2,0 = ṽ2,0,

The parameter vector that must be estimated is:

Θ = (µ, χ1, θ1, ε1, ṽ1,0, λ1, χ2, θ2, ε2, λ2, ṽ2,0, ρ1, ρ2),

where λi, i = 1, 2 are the risk premium parameters.

Eventually also the parameters ai, bi, i = 1, 2 could be estimated, but,
for the moment, we choose a1 = a2 = −1/2, b1 = b2 = 1. This choice is
done in analogy with the Heston model.

This model has been introduced by Fatone, Mariani, Recchioni, Zirilli
2009.

1.2.9 Why Using a Multiscale Model?

1. Several empirical studies of real data have shown that the term
structure of the implied volatility of the price of many underlyings
seems to be driven by two different factors (χ1 << χ2).

2. The model is able to reproduce spikes through the use of a fast time
scale volatility together with an intermediate time scale volatility.
This ability can be applied to the study of commodity prices and
eventually changing appropriately the meaning of the variables can
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be used to the study of prices financial products that live for long
time periods (such as life insurance contracts).

3. The model contains as special cases some well known models such
as the Black Scholes model and the Heston model.

4. The model is explicitly solvable that is, under some assumptions, the
transition probability density function of the stochastic process
solution of the model is represented as a one dimensional integral of
an explicitly known integrand. This property makes possible to price
put and call options in the model computing one dimensional
integrals.

1.2.10 The Multiscale Stochastic Volatility Model

We consider the parameter choice a1 = a2 = −1
2
, b1 = b2 = 1, that is:

dxt = (µ− 1

2
v1,t −

1

2
v2,t)dt+

√
v1,tdW

1
t +
√
v2,tdW

2
t , t > 0,

dv1,t = χ1(θ1 − v1,t)dt+ ε1
√
v1,tdZ

1
t , t > 0,

dv2,t = χ2(θ2 − v2,t)dt+ ε2
√
v2,tdZ

2
t , t > 0,

x0 = x̃0, v1,0 = ṽ1,0, v2,0 = ṽ2,0,

We call this choice Double Heston model.

The model is multiscale when 0 < χ1 << χ2.

The two stochastic variances v1,t, v2,t, t > 0, capture respectively the
long term variance (slow time scale) and the short term variance (fast time
scale).

Note that when we work on the calibration problem only with option
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prices as data we can incorporate the risk premium parameters λi, i = 1, 2,
associated to the risk neutral measure into the parameters χi and θi, i =

1, 2.

1.2.11 Spikes Using Multiscale Stochastic Volatility Model

Multiscale trajectory parameters: µ = 0.03, θ1 = 0.01, θ2 = 0.03,

χ1 = 1, χ2 = 100, ρ1 = −0.5, ρ2 = −0.7, ε1 = 0.25
√
χ1, ε2 = 2

√
χ2,

ṽ1,0 = 0.05, ṽ2,0 = 0.015;

Heston trajectory parameters: µ = 0.03, θ1 = 0.01, χ1 = 1, ρ1 = −0.5,

ε1 = 0.25
√
χ1, ṽ1,0 = 0.05.

The choice χ1 = 1 and χ2 = 100 guarantees that the stochastic variances
change on different time scales.
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t
x

t

Figure 6. Example of synthetic data

1.2.12 Transition Probability Density Function

Let pf (x, v1, v2, t, x
′, v′1, v

′
2, t
′), t > t′, be the transition probability

density function of the multiscale stochastic volatility model, the function
pf as a function of the “past” variables (x′, v′1, v

′
2, t
′) satisfies the

backward:
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−∂pf
∂t′

=
1

2
(b2

1v
′
1 + b2

2v
′
2)
∂2pf
∂x′2

+
1

2
ε2

1v
′
1

∂2pf

∂v′
2

1

+
1

2
ε2

2v
′
2

∂2pf

∂v′
2

2

+ε1b1ρ1v
′
1

∂2pf
∂x′∂v′1

+ ε2b2ρ2v
′
2

∂2pf
∂x′∂v′2

+ χ1(θ1 − v′1)
∂pf
∂v′1

+χ2(θ2 − v′2)
∂pf
∂v′2

+ (µ+ a1v
′
1 + a2v

′
2)
∂pf
∂x′

(x′, v′1, v
′
2) ∈ R× R+ × R+, 0 ≤ t′ < t,

with final condition:

pf (x, v1, v2, t, x
′, v′1, v

′
2, t) = δ(x′ − x)δ(v′1 − v1)δ(v′2 − v2),

(x, v1, v2), (x′, v′1, v
′
2) ∈ R× R+ × R+, t ≥ 0,

and the appropriate boundary conditions.

1.2.13 One Dimensional Integral Formula for Transition Probability
Density Function

In order to derive a representation formula for the transition probability
density function we proceed as suggested by A. Lipton (Mathematical
methods for foreign exchange, World Scientific Pubblishing Co. Pte. Ltd,
Singapore, (2001)):

1. write the backward equation satisfied by pf as a function of the “past
variables” (the equation written in the previous slide);

2. take the Fourier transform of pf with respect to the “future variables”;

3. this Fourier transform satisfies the backward equation with suitable
final condition;
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4. reduce the solution of the backward equation to the solution of a
system of ordinary differential equations involving Riccati equations
depending on some parameters;

5. find an explicit formula for the Fourier transform of pf solving the
system of ordinary differential equations, represent pf as a three
dimensional inverse Fourier transform and compute explicitly two of
the three resulting one dimensional integrals.

Proceeding as described previously we obtain:

pf (x, v1, v2, t, x
′, v′1, v

′
2, t
′)

=
1

2π

∫
R
dk eık(x−x′−µτ) ·

2∏
i=1

e−2χiθi((νi+ζi)τ+ln(si,b/(2ζi)))/ε
2
i ·

[
e−2v′i(ζ

2
i −ν2i )si,g/(ε

2
i si,b)e−Mi(ṽi+vi)Mi

(
vi
ṽi

)(χiθi/ε
2
i )−1/2

·

I2χiθi/ε2i−1

(
2Mi(ṽivi)

1/2

)]
,

(x, v1, v2), (x′, v′1, v
′
2) ∈ R× R+ × R+, t, t′ ≥ 0, t− t′ > 0,

where the quantities si,b, si,g, ṽi, Mi, i = 1, 2 are elementary functions.

1.2.14 The Elementary Functions Defining the Transition
Probability Density Function

The quantities si,b, si,g, ṽi, Mi, i = 1, 2 are given by:

si,g = 1− e−2ζiτ , si,b = ζi − νi + (ζi + νi)e
−2ζiτ , τ > 0, i = 1, 2,
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ṽi =
4v′iζ

2
i e
−2ζiτ

(si,b)2
, Mi =

2si,b
εi2si,g

, τ > 0, i = 1, 2,

where

νi = −1

2
(χi + ı k biεiρi) , k ∈ R, i = 1, 2 ,

ζi =
1

2

(
4ν2

i + ε2
i (b

2
i k

2 + 2ı k ai)
)1/2

, k ∈ R, i = 1, 2 .

1.2.15 European Vanilla Call Option

Using the risk neutral formula and proceeding as done to derive the
integral formula for pf , the price of a European vanilla call option at time
t = 0 with time to maturity τ > 0, strike price E and asset price S0 at
time t = 0 is given:

C(τ, E, S0, ṽ1,0, ṽ2,0) =
S0

2π
e−rτe2µτ

∫ +∞

−∞
dk
e−ık(log(S0/E)+µτ)−log(E/S0)

−k2 − 3ı k + 2

2∏
i=1

(
e−2χiθi(ν

c
i+ζci+log(sci,b/(2ζ

c
i )))τ/ε2i e−2ṽi,0((ζci )2−(νci )2)sci,g/(ε

2
i s
c
i,b)
)
,

ṽ1,0, ṽ2,0 > 0,

where r is the risk free interest rate,

νci = −1

2
(χi + ı k biεiρi − 2biρiεi) , k ∈ R, i = 1, 2,

ζci =
1

2

(
4(νci )

2+ε2
i (b

2
i k

2 + 2ı k ai + 4ı kb2
i − 4(ai + b2

i ))
)1/2

,

k ∈ R, i = 1, 2

sci,g = 1− e−2ζci τ , sci,b = ζci − νci + (ζci + νci )e
−2ζci τ , τ > 0,i = 1, 2.
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1.2.16 European Vanilla Put Option

In a similar way using the risk neutral formula we derive the following
formula for the price of a European vanilla put option at time t = 0 with
time to maturity τ > 0, strike price E and asset price S0 at time t = 0:

P (τ, E,S0, ṽ1,0, ṽ2,0) = E
2π
e−rτe−µτ

∫ +∞
−∞ dk e

−ık(log(S0/E)+µτ)−log(S0/E)

−k2+3ı k+2
·

2∏
i=1

(
e−2χiθi(ν

p
i +ζpi +log(spi,b/(2ζ

p
i )))τ/ε2i e−2ṽi,0((ζpi )2−(νpi )2)spi,g/(ε

2
i s
p
i,b)
)
,

ṽ1,0, ṽ2,0 > 0,

νpi = −1

2
(χi + ı k biεiρi + biρiεi) , k ∈ R, i = 1, 2,

ζpi=
1

2

(
4(νpi )2+ε2

i (b
2
i k

2+2ı k ai−2ı kb2
i−2(ai+b

2
i))
)1/2

,k∈R,i=1,2

spi,g = 1− e−2ζpi τ , spi,b = ζpi − ν
p
i + (ζpi + νpi )e−2ζpi τ , τ > 0, i = 1, 2.

1.2.17 Calibration Problem

Let R11 be the 11 dimensional real Euclidean vector space and letM be
the set of the admissible vectors Θ, that is:

M = {Θ = (ε1, θ1, ρ1, χ1, ṽ0,1, µ, ε2, θ2, ρ2, χ2, ṽ0,2) ∈ R11 |

εi,χi,θi ≥0, i=1, 2,
2χiθi
ε2
i

≥1,−1≤ρi≤−1, ṽ0,i≥0, i=1, 2},

at time t, t ≥ 0, we solve the following optimization problem:

min
Θ∈M

Lt(Θ),
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where the objective function Lt(Θ), t ≥ 0, is defined as follows:

Lt(Θ) =
mc∑
i=1

[
Ct,Θ(S̃t, Ti, Ki)− Ct(S̃t, Ti, Ki)

]2

+

mp∑
i=1

[
P t,Θ(S̃t, Ti, Ki)− P t(S̃t, Ti, Ki)

]2

,

and Ct, P t are the observed prices (data) of European vanilla call and put
options respectively.

1.2.18 Numerical Results on Synthetic Data

We generate a set of synthetic data (synthetic option prices) generating
the option prices with the Black Scholes formula choosing the volatility σ
equal to

√
0.4 and the risk free interest rate r equal to 0.03.

t

1,t
v

2,t
v
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Trajectories of the stochastic variances v1,t (red dotted line
corresponding to a reconstructed χ1 approximately equal to 9.96 · 10−4),
v2,t (blue dotted line corresponding to a reconstructed χ2 approximately
equal to 7.71) obtained solving the calibration problem using as data the
option prices generated with the Black Scholes model and corresponding
trajectory of the “true” Black Scholes variance (green line) versus time t.

1.2.19 Numerical Results on Real Data: S&P 500 Index

We study the values of the model parameters, of the correlation
coefficients and of the initial stochastic variances implied by the observed
prices of the European vanilla call and put options on the S&P 500 index
and by the value of the S&P 500 index in January, June and November
2005.

For each month we proceed solving the calibration problem using all (in,
at, out the money) the call and put option prices available to us relative to
third day of the month, that is for example November 3, 2005 (mc = 303

call options and mp = 284 put options).

The implied values obtained solving the calibration problem using the
data of November 3, 2005 (i.e. the third day of the month) are used to
forecast the option prices of November 7 (mc = 303, mp = 290),
November 14 (mc = 305, mp = 295), and November 28 (mc = 292,
mp = 265), 2005.

The calibration procedure works simultaneously on out of money, at the
money and in the money call and put options.
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1.2.20 Forecasted Values of Call and Put Options

November 28, 2005: European vanilla call and put option prices (V)
on the S&P500 index forecasted using the multiscale model and prices
observed in the market (November 3, 2005) versus moneyness K/S0.
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1.2.21 Absolute Errors on Forecasted Values of Call Option Prices
Heston-Multiscale Model

November 3, 2005
November 4, 2005

November 15, 2005
November 30, 2005

Absolute error

1.2.22 Future Work

• Develop a high performance parallel optimization method to solve the
calibration problem.

• Extend the previous work to other kinds of financial derivatives and to
the study of commodity prices.
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Note that several numerical experiments and digital movies relative to
the problem considered here that show the behaviour of the method
proposed to solve the estimation problem can be found in the website:
http://www.econ.univpm.it/recchioni/finance/w8.

A more general reference to the work in mathematical finance of the
authors and of their coauthors is the website:
http://www.econ.univpm.it/recchioni/finance.
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Section 1.3
SABR and Multiscale SABR Models: Option Pricing

and Calibration

[Description] A multiscale SABR model that describes the dynamics of
forward prices/rates is presented. New closed form formulae for the
transition probability density functions of the normal and lognormal
SABR and multiscale SABR models and for the prices of the
corresponding European call and put options are deduced. The technique
used to obtain these formulae is rather general and can be used to study
other stochastic volatility models. A calibration problem for the models
considered is formulated and solved. Numerical experiments with real
data are presented.

[Paper] Fatone L., Mariani F., Recchioni M.C., Zirilli F. (2013). Some
explicitly solvable SABR and multiscale SABR models: option pricing and
calibration, Journal of Mathematical Finance 3, 10-32.

[Website] http://www.econ.univpm.it/recchioni/finance/w14
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1.3.1 Outline of the Presentation

• Notations

• Motivations and background

• SABR and multiscale SABR models

• Hull and White model

• Kernels of the SABR models and of the Hull and White model

• Option pricing formulae in the SABR and multiscale SABR models

• Geometric interpretation of SABR models

• Calibration problem

• Some numerical results

• Future work

• References

1.3.2 Notations

• xt forward rate/forward asset price at time t.

• E(·) the expected value of · .

• SABR model:

(a) vt stochastic volatility associated to the forward rate/ forward
asset price xt at time t;

(b) ε volatility of volatility (real parameter).

• Multiscale SABR model:
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(a) vi,t, i = 1, 2, stochastic volatilities associated to the forward rate/
forward asset price xt at time t;

(b) εi, i = 1, 2, volatilities of volatilities (real parameters).

• Hull and White model:

(a) vt stochastic volatility associated to the asset price xt at time t;

(b) r drift of the asset price, µ drift of the variance Vt = v2
t , ε

volatility of volatility (real parameters).

1.3.3 Motivations and Background

A very popular model to price interest rates and foreign exchange
derivatives is the SABR model introduced in Hagan et al. (2002),
Wilmott Magazine, September 2002, 84-108.

We study:

1. the SABR model and one of its generalizations called SABR model
introduced in Fatone et al. (2013) Journal of Mathematical Finance.

2. the Hull and White model introduced in Hull, White(1987), The
Journal of Finance, 42, (1987), 281-300.

Note that the log-normal SABR model is a special case of the Hull and
White model.

1.3.4 SABR Model

The SABR model describes the dynamics of the forward price of an
asset xt, t > 0, and of its stochastic volatility vt, t > 0,
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(one factor volatility model), through the following stochastic differential
equations:

dxt = |xt|βvt dWx,t, t > 0,

dvt = ε vt dWv,t, t > 0,

with initial conditions:
x0 = x0, v0 = v0,

where ε, β are real parameters, ε > 0 is the vol of vol, β ∈ [0, 1] is the

β-volatility and x0, v0 are given random variables. We assume that x0, v0

are concentrated in a point with probability one and that v0 > 0. Moreover

Wx,t, Wv,t,t > 0, are stanard Wiener processes such thatWx,0 = Wv,0 = 0,

and dWx,t, dWv,t, t > 0, are their stochastic differentials whose correlation

structure is given by:

E (dWx,tdWv,t) = ρ dt,

where ρ ∈ (−1, 1) is the correlation coefficient. The models with β = 0

and β = 1 are called respectively normal and lognormal SABR models.

1.3.5 Multiscale SABR Model

The multiscale SABR model describes the dynamics of the forward price
xt, t > 0, of an asset and of its two stochastic volatilities v1,t, v2,t, t > 0,
(two factor volatility model), through the following stochastic differential
equations:

dxt = |xt|β (v1,t dWx,1,t + v2,t dWx,2,t) , t > 0,

dv1,t = ε1 v1,t dWv1,t, t > 0,
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dv2,t = ε2 v2,t dWv2,t, t > 0,

with initial conditions:

x0 = x0, v1,0 = v0
1, v2,0 = v0

2

where the parameters εi > 0, i = 1, 2 are the vols of vols, β ∈ [0, 1] is the
β-volatility and x0, v0

1 , v0
2 are given random variables that we assume to

be concentrated in a point with probability one. We assume v0
1, v

0
2 > 0.

Moreover dWx,v1,t, dWx,v2,t, dWv1,t, dWv2,t, t > 0, are the differentials of
four standard Wiener processes whose correlation structure is given by:

E (dWx,vi,tdWvi,t) = ρidt, i = 1, 2, E (dWx,v1,tdWx,v2,t) = 0,

E (dWv1,tdWv2,t) = 0

where ρi ∈ (−1, 1), i = 1, 2, are the correlation coefficients. The models
with β = 0 and β = 1 are called respectively normal and lognormal
multiscale SABR models.

1.3.6 Multiscale SABR Model (cont.)

Dropping the v1,t (or v2,t) variable, the corresponding equation and initial
condition the multiscale SABR model:

dxt = |xt|β (v1,t dWx,1,t + v2,t dWx,2,t) , t > 0,

dv1,t = ε1 v1,t dWv1,t, t > 0,

dv2,t = ε2 v2,t dWv2,t, t > 0,

with initial conditions:

x0 = x0, v1,0 = v0
1, v2,0 = v0

2,
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reduces to the SABR model.

The stochastic processes v1,t, v2,t, t > 0, are the two factors used to
model the volatility of the forward rate/price xt, t > 0.

The use of two factors instead of one factor to model the asset price
volatility produces a very careful description of asset price behaviours
characterized by two time scales such as short-medium time scales
(spikes, abrupt price changes), or medium-long time scale (interest rate
term structures). The ratio ε2/ε1 determines the two time scales of the
forward rate/price volatility (see, for example, Fatone et al. European
Financial Management 2013).

1.3.7 Hull and White Stochastic Volatility Model

The Hull and White model (Hull 1987) describes the dynamics of the
asset price xt, t > 0, and of its stochastic volatility vt, t > 0,
(one factor volatility model), through the following stochastic differential
equations:

dxt = r xtdt+ xt vt dWx,t, t > 0,

dvt =
1

2

(
µ− ε2

)
vt dt+ ε vt dWv,t, t > 0,

with initial conditions:

x0 = x0, v0 = v0,

where r, ε, µ are real parameters, r is the drift of the asset, priceε > 0 is
thevol of vol, µ is the drift of the variance Vt = v2

t , t > 0, and x0, v0

are given random variables. We assume that x0, v0 are concentrated in a
point with probability one and that v0 > 0. Moreover Wx,t, Wv,t,t > 0,
are standard Wiener processes such that Wx,0 = Wv,0 = 0, and dWx,t,
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dWv,t, t > 0, are their stochastic differentials whose correlation structure
is given by:

E (dWx,tdWv,t) = ρ dt,

where ρ ∈ (−1, 1) is the correlation coefficient. The Hull and White model

reduces to the lognormal SABR model (i.e. β = 1 SABR model) when µ = ε2 and

r = 0.

1.3.8 Some Open Problems about the SABR and the Hull and White
Models

Find:

(a) Closed form formulae for the joint probability density function of
the state variables of the SABR model when β = 0, β = 1 and of
the Hull and White model in presence of nonzero correlation, that is
when ρ 6= 0;

(b) Closed form formulae for the joint probability density function of the
state variables of the SABR model when β ∈ (0, 1) in the case of zero
correlation, that is when ρ = 0;

(c) Closed form formulae to price European call and put options for the
models specified in a) and b);

(d) Closed form formulae analogous to those of (a), (b) and (c) for the
multiscale versions of the SABR and of the Hull and White models.

1.3.9 Last Year Results

Last year results were limited to the normal SABR and multiscale SABR
models.
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1. Closed form formulae for the joint transition probability density
functions of the normal SABR and multiscale SABR models. The
knowledge of these joint transition probability density functions in
closed form allowed us to derive formulae for the corresponding
option prices and for the moments of the asset price process.

2. The formula for the joint transition probability density function of the
normal SABR model has been expressed through a “kernel” related
to the heat kernel of the Kontorovich-Lebedev transform.

3. Under suitable assumptions on the correlation structure (absence of
correlation between the volatilities) the joint probability density
function of the normal multiscale SABR model has been expressed
as a kind of “convolution” of two copies of the kernel of the normal
SABR model.

1.3.10 This Year Results on SABR and Hull and White Models and
on Their Multiscale Versions

We have obtained:

1. New closed form formulae for the joint transition probability density
function of:

• log-normal SABR model (i.e. β = 1) in presence of nonzero
correlation, ρ ∈ (−1, 1) (Fourier transform, heat kernel of the
Kontorovich-Lebedev transform);

• Hull and White model in presence of nonzero correlation, ρ ∈
(−1, 1) (Fourier transform, heat kernel of the index Whittaker
transform);
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• SABR model with β ∈ (0, 1), in the case of zero correlation,
ρ = 0 (Hankel transform, heat kernel of the
Kontorovich-Lebedev transform) .

2. New expansion in powers of ρ of the joint transition probability
density function of the SABR model with β ∈ (0, 1), ρ ∈ (−1, 1).

3. New formulae for the joint transition probability density functions of
the multiscale versions of the models mentioned in 1), 2), 3) under
suitable assumptions on their correlation structure using a
kind of convolution of the kernels mentioned above.

4. New formulae for the geodesic curves of the Riemannian manifolds
associated to the SABR models.

1.3.11 This Year Results on SABR and Hull and White Models and
on Their Multiscale Versions (cont.)

As a consequence of the results listed in the previous slide, we obtain
new closed form formulae for European call and put option prices in the
following models:

1. Log-normal SABR model (i.e. β = 1) in presence of nonzero
correlation, ρ ∈ (−1, 1);

2. Hull and White model in presence of nonzero correlation,
ρ ∈ (−1, 1);

3. SABR model with β ∈ (0, 1), in the case of zero correlation, ρ = 0;

4. Multiscale versions of the normal and lognormal SABR and of the
Hull and White models.
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Note that for the SABR model when β ∈ (0, 1), ρ ∈ (−1, 1) we have
deduced expansions in powers of ρ with base point ρ = 0 for the European
call and put option prices.

The SABR model with β = 1/2 can be seen as a stochastic volatility
version of the CIR model. This model deserves special attention and will
be investigated elsewhere.

1.3.12 The Heat Kernel: An Example

Let us explain the meaning of “heat kernel” of an integral transform in
the simplest case. That is in the case when the Wiener process and the
heat equation are studied using the Fourier transform. Let us consider the
stochastic differential equation:

dxt = σ dWt, t > 0,

where dWt is the differential of the standard Wiener processWt, t > 0, and

σ > 0 is a constant. The solution xt, t > 0, of this differential equation is a

Wiener process and its transition probability density function p(xf , tf , x, t)

is the probability of having at time tf > 0 xtf = xf given that at time t ≥ 0

we have xt = xwhen t < tf . The function p is the solution of the following

backward Kolmogorov equation:

−∂p
∂t

=
σ2

2

∂2p

∂x2
, x ∈ (−∞,+∞), t < tf ,

with final condition:

p(xf , tf , x, tf ) = δ(x− xf ), x, xf ∈ (−∞,+∞).
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Note that the previous backward Kolmogorov equation is a back-ward
heat equation. To determine p we must solve this final value problem.

1.3.13 Solution Procedure

Step 1 Change the independent variables t and x using the invariance
properties of the function p implied by the backward Kolmokorov equation
(s = tf − t, t < tf , ξ = x− xf , x, xf ∈ (−∞,+∞)).

Step 2 Assume that p∗(s, ξ) = p(xf , tf , x, t), s = t− tf , ξ = x− xf has
the following form:

p∗(tf − t, x− xf ) =
1

2π

∫ +∞

−∞
dk e−ı k (x−xf )g(tf − t, k).

The function g is the Fourier transform of p∗ with respect to the variable
ξ = x− xf . We have:

g(s, k) =

∫ +∞

−∞
dξ eı k ξ p∗(s, ξ),

Step 3 Determine g as the solution of the backward Kolmogorov
equation written in the new independent variables (s, k). Note that in the
case studied here the Fourier transform diagonalizes the differential
operator in the variable x of the backward Kolmogorov equation.

The function g is the “heat kernel”.

1.3.14 The Heat Kernel - Step 1

Step 1: The function p is invariant by time translation. Let p∗(s, x −

xf ) = p(xf , tf , x, t), s = tf − t > 0, x, xf ∈ (−∞,+∞).
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The backward Kolmogorov equation can be rewritten as follows:

∂p∗

∂s
=
σ2

2

∂2p∗

∂x2︸ ︷︷ ︸
heat equation

, x ∈ (−∞,+∞), s > 0,

with initial condition (the Dirac’s delta function δ):

p∗(0, xf − x) = δ(x− xf ), x, xf ∈ (−∞,+∞).

Note that p∗ is the fundamental solution of the heat equation since it
satisfies the heat equation and the initial condition given by the (impulse)
Dirac’s delta function.

1.3.15 The Heat Kernel - Step 2-3

Step 2: Take p∗ in the form:

p∗(s, x− xf ) =
1

2π

∫ +∞

−∞
dk e−ı k (x−xf )g(s, k).

The function g is the Fourier transform of p∗ with respect to the variable
ξ = x− xf .

Step 3: In order to satisfy the initial condition we have:

δ(x− xf ) = p∗(0, xf , x) =
1

2π

∫ +∞

−∞
dk e−ı k (x−xf )g(0, k),

this implies g(0, k) = 1, k ∈ (−∞,+∞). In fact we have:

f(x) =
1

2π

∫ +∞

−∞
dk e−ı k x

∫ +∞

−∞
dη e+ı η k f(η), ∀ f
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that is:

δ(x− η) =
1

2π

∫ +∞

−∞
dk e−ı k x eı k η

These last two formulae are called resolution of the identity of the
Fourier transform.

1.3.16 The Heat Kernel - Step 3

The function g satisfies the following initial value problem that translates
the final value problem for the backward Kolmogorov equation written
above:

∂g

∂s
= −k2σ

2

2
g︸ ︷︷ ︸

the spatial part has been diagonalized

, k ∈ (−∞,+∞), s > 0,

with initial condition:

g(0, k) = 1, k ∈ (−∞,+∞).

The equation satisfied by g is an ordinary differential equation depending
on the parameter k. The solution of the initial value problem satisfied by g
is:

g(s, k) = e−k
2s/(2σ2), k ∈ (−∞,+∞), s > 0,

and we have:

p∗(s, x− xf )=
e−

(xf−x)
2

2σ2 s

σ
√

2π s
=

1

2π

∫ +∞

−∞
dk e−σ

2k2s/2︸ ︷︷ ︸
heatkernel

e−ı k x eı k xf ,

x ∈ (−∞,+∞), s > 0.
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1.3.17 The Heat Kernel

The procedure used in the previous slides to derive the transition
probability density function of the Wiener process is used to obtain the
transition probability density functions of the SABR and Hull and White
models.

Note that the presence of the stochastic volatility (or volatilities) in
these models implies that after taking the Fourier transform (or the
Hankel transform) with respect to the asset price variable the equation
satisfied by g is still a partial differential equation of parabolic type in the
time and the stochastic volatility variable (or variables).

In order to find an ”explicit” solution of this last equation we use
another integral transform that ”diagonalizes” the elliptic part of the
parabolic equation satisfied by g. That is the Kontorovich-Lebedev
transform or the index Whittaker transform.

1.3.18 The Transforms Corresponding to the Kernels Used in the
Study of the SABR and the Hull and White Models

The Kontorovich-Lebedev transform (β = 0, β = 1 SABR model):

Kf (x) =

∫ +∞

0

dω f(ω)Kıω(x)

The index Whittaker transform (Hull and White model):

W µ
f (x) =

∫ +∞

0

dωω sinh(2πω)f(ω)Wµ,ıω(x)

The Hankel transform+Kontorovich-Lebedev transform
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(β ∈ (0, 1), ρ = 0 SABR model):

The Hankel transform :Bµ
f (x) =

∫ +∞

0

dωω f(ω)Jµ(ω x)

where ı is the imaginary unit, Kν , Wµ,ν , Jµ are respectively the modified
Bessel function of second kind of index ν, the Whittaker function of
indices µ, ν and the Bessel function of first kind of index µ.

1.3.19 Resolutions of the Identity Associated to the Previous Integral
Transforms

Kontorovich-Lebedev resolution of the identity (Yakubovic 2011):

f(x)=
2

π2

∫ +∞

0

dω ω sinh(πω)Kıω(x)

∫ +∞

0

dη

η
Kıω(η)f(η),∀f,

Index Whittaker resolution of the identity (Szmytkowski, Bielski 2010):

f(x)=
1

π2

∫ +∞

0

dω ω sinh(2πω)Γ

(
1

2
−ν+ıω

)
Γ

(
1

2
−ν−ıω

)
·

Wν,ıω(x)

∫ +∞

0

dη

η2
Wν,ıω(η)f(η), ∀f,

The Hankel resolution of the identity:

f(x) =

∫ +∞

0

dω ω Jν(ω x)

∫ +∞

0

dη ηJν(ω η)f(η), ∀ f,

where Γ is the Gamma function.

http://www.sciencepublishinggroup.com 57



Research Seminars in Mathematical Finance: Stochastic Volatility Models, Option Pricing,
Calibration

1.3.20 This Year Results on SABR and Hull and White Models
(cont.)

The different nature of the kernels behind the SABR models with β = 0

or β = 1 (i.e. Fourier transform and Kontorovich-Lebedev transform) and
the SABR models with β ∈ (0, 1) (i.e. Hankel transform and
Kontorovich-Lebedev transform) is due to the fact that the
second order differential operator of the backward Kolmogorov equation
associated to the SABR model with β = 0 or β = 1 is a
differential operator in the conjugate variable of the Fourier transform of
the asset price, while this is not true when β ∈ (0, 1).

The heat kernels considered previously for the SABR models are
related to the fundamental solutions of the “heat equation” on suitable
Riemannian manifolds. The elliptic second order operators appearing in
these heat equations are the “Laplace-Beltrami operators” of the
Riemannian manifolds. The study of the geodesic curves of these
manifolds and of their length can be used to build approximations of the
solutions of the corresponding “heat equations” or of equations related to
them as the backward Kolmogorov equations of the SABR models.

1.3.21 This Year Results on SABR and Hull and White Models

P. Hagan, A. Lesniewski and D. Woodward (2005) studied the
differential geometry of the SABR model and derived an expression of
the geodesic distance of the Riemannian geometry associated to the
SABR model. We carry one step further their analysis and we obtain the
analytical expression of the corresponding geodesic curves. We study the
behaviour of these geodesic curves as a function of several parameters.
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We show that under some assumptions on their correlation structure the
joint probability density functions of the multiscale SABR and Hull and
White models are a “convolution” of two copies of the kernel of the
corresponding non multiscale models.

1.3.22 SABR Backward Kolmogorov Equation

dxt = |xt|β vt dWx,t, t > 0,

dvt = ε vt dWv,t, t > 0.

The joint transition probability density function pβ(xf , vf , tf , x, v, t) of
the state variables of the normal SABR model is the probability of having
at time tf > 0 (xtf , vtf ) = (xf , vf ) given that at time t ≥ 0 we have
(xt, vt) = (x, v) when t < tf . The function pβ is invariant for time
translation so that it can be rewritten as a function of the difference
s = tf − t and it is the solution of the following problem (backward
Kolmogorov equation):

∂pβ
∂s

=
1

2
x2βv2∂

2pβ
∂x2

+
ε2

2
v2∂

2pβ
∂v2

+ ρ v2xβ
∂2pβ
∂ x∂ v

,

s = tf − t > 0, x ∈ (−∞,+∞), v ∈ (0,+∞),

pβ(s = 0, xf , vf , x, v) = δ(x− xf ) δ(v − vf ) .

Note that when β = 0 and β = 1 we have integer powers of the variable
x in the coefficients of the previous equation and this makes the normal
(β = 0) and the lognormal (β = 1) SABR models easier to treat
analytically than the models with β ∈ (0, 1).
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1.3.23 Solution Procedure

Step 1 Change the independent variables t and x using the invariance

properties of the backward Kolmokorov equation, that is introduce the

variables s = tf − t, and x = fβ(ξ), ξ ∈ (−∞,+∞), when β = 0, 1, or

ξ ∈ (0,+∞), when β ∈ (0, 1) where fβ is a suitable function depending

on the parameter β ∈ [0, 1];

Step 2 Determine p∗β(ξf , vf , tf , ξ, v, t), t < tf , such that
pβ(xf , vf , tf , x, v, t)dxf dvf = p∗β(ξf , vf , tf , ξ, v, t)f

′
β(ξf )dξf dv, where

f ′β is the derivative of fβ and assume that p∗ has the following form:

p∗β(ξf ,vf ,tf ,ξ,v,t)=
1

2π

∫ ∞
−∞

dke−ı k(ξ−ξf )gβ(tf−t,k,vf,v)︸ ︷︷ ︸
(Fourier Transform)

,β=0,1,

p∗β(ξf,vf ,tf ,ξ,v,t)=

∫ ∞
0

dk kJ 1
2(1−β)

(ξ k)J 1
2(1−β)

(ξf k)gβ(tf−t,k,vf ,v)︸ ︷︷ ︸
(Hankel Transform)

,

β ∈ (0, 1),

Step 3 Determine gβ as the solution of the backward Kolmogorov
equation rewritten in the new independent variables (s, k, v).

The function gβ is the “heat kernel” of the SABR model.
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1.3.24 The Heat Kernel of SABR Model β = 0, β = 1

Transforms:

β = 0 =⇒ x = f0(ξ) = ξ, ξ ∈ (−∞,+∞),

β = 1 =⇒ x = f1(ξ) = eξ, ξ ∈ (−∞,+∞),

Partial differential equation for gβ(s, k, vf , v), k ∈ (−∞,∞), s, v, vf ∈
(0,+∞), β = 0, 1:

∂gβ
∂s

=
ε2

2
v2∂

2gβ
∂v2

− ı k ρ v2∂ gβ
∂ v

+

(
−1

2
k2v2 + β

(
ı k

2

))
gβ,

s = tf − t > 0, k ∈ (−∞,∞), v ∈ (0,+∞), β = 0, 1.

with initial condition:

gβ(0, k, vf , v)=δ(v − vf ), k ∈ (−∞,∞), v ∈ (0,+∞), β=0, 1,

where δ is the Dirac’s delta function.

1.3.25 The Heat Kernel of SABR Model β = 0, β = 1 (cont.)

Using the Kontorovich-Lebedev transform and the corresponding
resolution of the identity it can be shown that the function gβ , β = 0, 1,
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has the following form:

gβ(s, k, vf , v, ε, ρ)=
2

π2
e−

s
8
ε2
( √

v
√
vfvf

)
eı k ρ(v−vf )/ε ·

∫ +∞

0

dω e−sε
2ω2/2ω sinh(πω)Kıω (νβ(k)vf )Kıω (νβ(k)v)︸ ︷︷ ︸
heat kernel of Kontorovich−Lebedev transform

,

s > 0, k ∈ (−∞,+∞), vf , v ∈ (0,+∞), ε > 0, ρ∈(−1, 1), β = 0, 1,

where

νβ(k) =

(
k2

ε2
− ı β k

ε2

)1/2

, k ∈ (−∞,+∞), vf , v ∈ (0,+∞),

ε > 0, ρ ∈ (−1, 1), β = 0, 1.
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1.3.26 The Joint Transition Probability Density Function of SABR
Model β = 0, β = 1 (cont.)

p∗β(ξf , vf , tf , ξ, v, t) =

1√
ππ

1√
2(tf − t)ε2

e−
(tf−t)

8
ε2 e

π2

2(tf−t)ε2
(1− ρ2)

ε2

(
v
√
v

√
vf

)
·

eβ(−(ξ−ξf )+ρ(v−vf )/ε)/(2(1−ρ2)) ·∫ +∞

0

du sinh(u) sin(
uπ

(tf − t)ε2
)e
− u2

2(tf−t)ε2 ·

e
− β

2(1−ρ2)

[
(−(ξ−ξf )+ρ(v−vf )/ε)2+

(1−ρ2)
ε2

(v2+v2f+2vfv cosh(u))
] 1

2

· 1[(
−(ξ − ξf ) + ρ

ε
(v − vf )

)2
+ (1−ρ2)

ε2
(v2
f + v2 + 2vfv cosh(u))

]3/2

+
β/(2(1− ρ2))[(

−(ξ − ξf )+ ρ
ε
(v − vf )

)2
+ (1−ρ2)

ε2
(v2
f + v2 + 2vfv cosh(u))

]
,

t< tf , ξ, ξf ∈ (−∞,+∞), v, vf ∈(0,+∞), ε > 0, ρ ∈ (−1, 1), β = 0,1.
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1.3.27 Option Pricing in the SABR Model β = 0, β = 1

Let us define the function Sβ:

Sβ(s, k, v, ε, ρ)=

∫ +∞

0

dvfgβ(s, k, vf , v)

=

√
2√
π
e−

s
8
ε2eı k

ρ v
ε
e
π2

2sε2

√
2sε2∫ +∞

0

du sinh(u) sin
( πu
sε2

)
e−u

2/(2sε2) ·

∫ +∞

0

dy
√
y
e−y cosh(u) e−ãβ(y)

s ∈ R+, k ∈ R, v ∈ R+, ε > 0, ρ ∈ (−1, 1),

where ã2
β is given by:

ã2
β(y) =

(
y2 + v2k2 (1− ρ2)

ε2

)
+ ı k

v

ε

(
2yρ− β v

ε

)
,

y ∈ R+, β = 0, 1.

1.3.28 European Call Option Price in the SABR and Multiscale
SABR Models with β = 0, 1

In the normal (β = 0) and lognormal (β = 1) SABR and multiscale
SABR models with risk neutral parameters let Cβ(x,K, T ) and
CM,β(x,K, T ) be respectively the prices at time t = 0 in the SABR and in
the multiscale SABR models of an European call option on the asset
whose forward price is x = fβ(ξ), β = 0, 1 (see Step 1), having expiry
date T > 0 and strike price K, we have:
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Cβ(x,K, T ) =
1

2π

∫ +∞

−∞
dξ′(fβ(ξ′)−K)+

∫ +∞

−∞
dηe−ıη(ξ−ξ′)Sβ(T, η, v0, ε, ρ),

ξ ∈ (−∞,+∞), v0, T > 0,

CM,β(x,K, T ) =
1

2π

∫ +∞

−∞
dξ′(fβ(ξ′)−K)+

∫ +∞

−∞
dηe−ıη(ξ−ξ′) Sβ(T, η, v0

1, ε1, ρ1)Sβ(T, η, v0
2, ε2, ρ2)︸ ︷︷ ︸

kind of convolution

,

ξ ∈ (−∞,+∞), v0
1, v

0
2, T > 0,

where ( · )+ denotes the maximum between zero and · and Sβ(s, η, v, ε, ρ)

is the function shown in the previous slide. These option pricing formulae
are used in the numerical experiments discussed at the end.

1.3.29 The Joint Transition Probability Density Function of Hull and
White Model

pHW (xf , vf , tf ,x, v, t) =
1

2π

1

xf

∫ +∞

−∞
dx e−ı k(ln(x/xf ))gHW(t− t′, k,vf ,v),

(x, v), (xf , vf ) ∈ (0,+∞)× (0,+∞), t, tf ≥ 0, t < tf ,

the function gHW is given by:
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gHW (s, k, vf , v) =
1

π2
e−

ε2s
8 e−(µ̃2−2µ̃) ε

2s
8 e−ı

k
ε
ρ(v−vf )e−

µ̃
2

ln(v/vf ) ·

1

2ν(k)1/2

1

v2
f

∫ +∞

0

dω ·

e−
sε2ω2

2 ωsinh(2πω)Γ

(
1

2
− a(k) + ıω

)
Γ

(
1

2
− a(k) − ıω

)
Wa(k)ıω

(
2vν(k)1/2

)
Wa(k)ıω

(
2vfν(k)1/2

)
︸ ︷︷ ︸

heat kernel of indexWhittaker transform

where

ν(k)=
k2

ε2
(1− ρ2)− ı k

ε2
, a(k)= ı

µ̃

2

ρ

ε

k

ν(k)1/2
, k∈(−∞,+∞).

(for further details Fatone et al 2013, International Journal of Modern
nonlinear Theory and Application.)

1.3.30 The Heat Kernel of the SABR Model β ∈ (0, 1), ρ = 0

We rewrite the joint probability density function function pβ(xf , vf , tf ,

x, v, t), x, xf , v, vf ∈ (0,+∞), t < tf , β ∈ (0, 1), ρ = 0, using the

change of variable x = fβ(ξ) = (1 − β)1/(1−β)ξ1/(1−β). We deduce the

following expression of the joint probability density function in the new

variable p∗β(s, ξf , vv, ξ, v) = pβ(fβ(ξf ), vf , tf , fβ(ξ), v, t), s = tf − t:
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p∗β(s, ξf , vf , ξ, v)=(1−β)−1/(1−β)ξ
−1/(1−β)
f ξ1−ν

f ξν
∫ +∞

0

dλ λ ·J 1
2(1−β)

(ξf λ) J 1
2(1−β)

(ξ λ)︸ ︷︷ ︸
Hankel transform

2

π2
e−

s
8
ε2
( √

v
√
vfvf

)∫ +∞

0

dω·

e−sε
2ω2/2ω sinh(πω)Kıω (λ vf )Kıω (λ v)︸ ︷︷ ︸

heat kernel of Kontorovich−Lebedev transform

 ,

s > 0, k ∈ (−∞,+∞), ξf , ξ, vf , v ∈ (0,+∞) .

1.3.31 Riemannian Metric Associated to the SABR Models β ∈ [0, 1)

Let us consider H0={ (x, v) ∈ R×R+ } and Hβ={ (x, v) ∈ R+ ×R+ },
β ∈ (0, 1). The set Hβ is equipped with a Riemannian metric depending
on β ∈ [0, 1) given by:

G = ((gi,j)) =
1

v2ε2x2β
√

1− ρ2

(
ε2 −ρ |x|β ε

−ρ |x|β ε x2β

)
,

G−1 = ((gi,j)) =
v2√

1− ρ2

(
x2β ρ |x|β ε

ρ |x|β ε ε2

)
.

The Laplace Beltrami operator ∆G on the Riemannian manifoldHβ with
the metric tensor g associated to the metric G is given by:

∆G pβ =
1
√
g

2∑
µ=1

∂

∂ xµ

(
√
g

2∑
ν=1

gµ,ν
∂pβ
∂ xν

)
,

where we have used the notation x1 = x, x2 = v and g is the determinant
of G.
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The backward Kolmogorov equation of the SABR model can be written
as follows:

∂pβ
∂s

=
1

2
∆Gpβ −

β

2
ε2x2β−1v2∂ pβ

∂x

1.3.32 Geodesics Equations Associated to the SABR Models
β ∈ [0, 1)

Let τ be the arc length of a curve and let x(τ), v(τ), τ > 0 denote a

geodesic curve of the manifold Hβ , β ∈ [0, 1]. When β ∈ [0, 1) a standard

calculation gives the following system of ordinary differential equations

for the geodesic curves:

Equation for x=x(τ )

d2x

dτ 2
+Γ1

1,1

(
dx

dτ

)2

+2Γ1
1,2

(
dx

dτ

)(
dv

dτ

)
+Γ1

2,2

(
dv

dτ

)2

=0 =⇒

(1− ρ2)
d2x

dτ 2
+

(
−β
x

+
β ρ2

x
+

ε ρ

|x|β v

)(
dx

dτ

)2

−

2

(
1

v

)(
dx

dτ

)(
dv

dτ

)
+
ρ |x|β

ε v

(
dv

dτ

)2

= 0
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Equation for v=v(τ )

d2v

dτ 2
+Γ2

1,1

(
dx

dτ

)2

+2Γ2
1,2

(
dx

dτ

)(
dv

dτ

)
+Γ2

2,2

(
dv

dτ

)2

=0 =⇒

(1− ρ2)
d2v

dτ 2
+

(
ε2

v x2β

)(
dx

dτ

)2

−

2

(
ε ρ

v |x|β

)(
dx

dτ

)(
dv

dτ

)
+

(
(2ρ2 − 1)

v

)(
dv

dτ

)2

= 0.

where Γki,j , i, j, k = 1, 2, are the Christoffel symbols.

1.3.33 Geodesics Associated to the SABR Models β ∈ [0, 1)

The previous system of ordinary differential equations that
characterizes the geodesic curves has been solved explicitly. The geodesic
curve that joins the points P0 = (x0, v0) and P1 = (x1, v1) has the
following expression:(

ε
|x|1−β

1− β
− ρ v − a

)2

+ (1− ρ2)v2 = b2, β ∈ (0, 1).

where a and b are given by:

a=
1

2
(η1+η0)+

1

2
(1−ρ2)

(v2
1−v2

0)

(η1−η0)
, ηi=ε

|xi|1−β

1−β
−ρ vi,i=0,1,

b2 =
1

4
(η1−η0)2+

1

4
(1−ρ2)

(v2
1−v2

0)2

(η1−η0)2
+

1

2
(1−ρ2)(v2

1 +v2
0)
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Note that the geodesics are semi-ellipses in the plane (η, v) where

η = ε |x|
1−β

1−β − ρ v.

1.3.34 Geodesic Curves Associated to the SABR Models β ∈ [0, 1)

0 2 4 6 8 10 12 14
0
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  x 

 v
dotted line β=1/3, ρ=−0.5

solid line β=2/3, ρ=−0.5

P
0

dashed line β=0, ρ=0

P
1

Geodesics passing through the points P0 and P1

1.3.35 Geodesic Curves Associated to the SABR Models β ∈ [0, 1)

The knowledge of explicit formulae for the geodesic curves of the
Riemannian manifolds associated to the SABR models can be used to
approximate the joint transition probability density functions of these
models. There are two ways of doing this:

1) in the small time limit use Varadhan’s theorem and the analogous in
this context of the Wentzel-Kramers-Brilllouin (WKB) semiclassical
approximation in quantum mechanics;

2) develop numerical methods to evaluate the path integral (Wiener
integral) formula that gives the transition probability density function.
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These numerical methods are kind of importance sampling Monte
Carlo methods (that exploit geodesic formulae) to evaluate integrals in
infinitely many dimensions.

These questions deserve further attention and will be investigated
elsewhere.

1.3.36 Calibration Problem

Many different calibration problems can be considered. Let us study one
of them.

Let m be a positive integer and let C(x0, Kj, T ), P (x0, Kj, T ) be the
observed prices of the European call and put options with strike prices
Kj , j = 1, 2, . . . ,m, maturity time T and forward asset price x0 at time
t = t0 = 0 and let CQ(x0, Kj, T ), PQ(x0, Kj, T ) be the corresponding
prices of the European call and put options computed using respectively
the lognormal SABR (Q = L) and multiscale SABR (Q = ML) models.
LetMQ, Q = L,ML, be given by:

MML=
{

Θ= (ε1, ρ0,1, ṽ0,1, ε2, ρ0,2, ṽ0,2, r) ∈ R7 | εi > 0,

−1 < ρ0,i < 1, ṽi,0 ≥ 0, i = 1, 2, ε1 ≤ ε2, r ≥ 0 }.

ML=
{

Θ= (ε, ρ, ṽ0, r) ∈ R4 | ε > 0, −1 < ρ < 1,

ṽ0 ≥ 0, r ≥ 0 } .

Calibration Problem: find an estimate of the vector Θ from the
observations, that is, from the knowledge of the observed option prices
C(x0, Kj, T ), P (x0, Kj, T ), j = 1, 2, . . . ,m.
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1.3.37 Formulation of the Calibration Problem

The calibration problem considered is formulated as follows:

min
Θ∈MQ

LQ(Θ),

where the objective function LQ(Θ) is given by:

LQ(Θ) =
m∑
i=1

[CQ(x0, Ki, T )− C(x0, Ki, T )]2 +

m∑
i=1

[PQ(x0, Ki, T )− P (x0, Ki, T )]2 ,

Θ ∈MQ, Q = L,ML,

We compute the relative errors:

εQ(K) = |CQ(x0, K, T )− C(x0, K, T )|/|C(x0, K, T )|,

ψQ(K) = |PQ(x0, K, T )− P (x0, K, T )|/|P (x0, K, T )| .

1.3.38 Some Numerical Results - Data Description

We consider the daily observed values of the U.S.A. five-Year Interest
Rate Swap (see Figure (a)), the corresponding futures prices having
maturity September 30th, 2011 (the ticker DSU1 in Figure (b)) and the
prices of the corresponding European call and put options with expiry
date September 19th, 2011 and strike prices Ki = 106 + 0.5 ∗ (i − 1),
i = 1, 2, . . . , 18, (i.e.: nC = nP = 18) in the period September 14th,
2010, July 20th, 2011. The prices considered are expressed in USD, are
daily prices and are the closing price of the day. The strike prices Ki,
i = 1, 2, . . . , 18, are expressed in base points. We consider two dates the
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first one t̂1 = October 12th, 2010 selected in a period where the
oscillations of futures price are small and the second one
t̂2 = November 15th, 2010 at the beginning of the fall of the futures
prices. Note that from November 12th, 2010 to December 15th, 2010 the
futures price goes from the value of 110 to the value of 104 base points.
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(a)

(b)
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1.3.39 Observed European Call and Put Option Prices September
2010 - July 2011

Call option prices on DSU1 with strike priceKi = 106+0.5∗ (i−1), i = 1, 2, . . . , 18, and expiry

date T= September 19th, 2011 versus time.

Put option prices on DSU1 with strike price Ki = 106 + 0.5 ∗ (i− 1), i = 1, 2, . . . , 18, and expiry

date T= September 19th, 2011 versus time.
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1.3.40 Performance in Predicting Option Prices of the Lognormal
Models One Day Ahead
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(d)
Observed and forecast prices one day in the future of call and put options of lognormal SABR (a)

and multiscale SABR (c) and relative errors (b) (lognormal) (d) (lognormal multiscale) obtained

calibrating the models at t̂ = t1 = October 12th, 2010 versus moneyness.
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(d)
Observed and forecast prices one day in the future of call and put options of lognormal SABR (a)

and multiscale SABR (c) and relative errors (b) (lognormal) (d) (lognormal multiscale) obtained

calibrating the models at t̂ = t2 = November 15th, 2010 versus moneyness.
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1.3.41 Performance in Predicting Option Prices of the Lognormal
Models One Day Ahead for a Period of Two Months
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(b)
Relative errors on the forecast prices one day in the future of call and put options obtained using

lognormal SABR model (a) and lognormal multiscale SABR model (b) versus time to maturity

expressed in days. The period considered goes from September 14th, 2010, to November 15th,

2010 (interest rate swap experiment).

80 http://www.sciencepublishinggroup.com



Chapter 1. Stochastic Volatility Models

1.3.42 Model Parameters - Lognormal SABR and Multiscale SABR
Models
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Parameter values obtained calibrating the lognormal SABR and multiscale SABR models every day

for two months in the period going from September 14th, 2010 to November 15th, 2010 versus time

(interest rate swap experiment).

The numerical experiments presented show that in the forecast of
European option prices the lognormal multiscale SABR model
outperforms the lognormal SABR model.

The improvement depends on the set of data analyzed and in some cases
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may be not significant.

The improvements are more significant when the underlying asset prices
present abrupt changes.That is in the situations where the multiscale model
that contains a two factor volatility model is expected to outperform the
standard model that is based on a one factor volatility model.

1.3.43 Future Work

• Analysis of the SABR and multiscale SABR models with β = 1/2.

• Asymptotic expansions of the probability density function associated
with the state variables of the multiscale SABR model when β ∈
(0, 1) and β 6= 1/2.

• Use the differential geometry of the models to obtain formulae and
numerical algorithms of practical use in mathematical finance.

• Use the “target tracking procedure” presented in [3] for the Heston
model to explore the forecasting ability of the SABR and Hull and
White models.

• Develop ad hoc statistical tests to calibrate the SABR and Hull and
White models.

A general reference to the work in mathematical finance of the authors
and of their coauthors is the website:
http://www.econ.univpm.it/recchioni/finance .
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